

Network Diagnostic Tool (NDT): An
Internet2 Cookbook

Disclosure/Disclaimer

This work was supported (in part) by the Office of Science, U.S. Department of Energy
under Contract W-31-109-ENG-38.

Packet-Pair work was supported by the Cisco University Research Program Work-for-
Others Contract P-03008.

Duplex mismatch work was supported by the National Library of Medicine under
contract 467-MZ-401761.

This document was developed to be used in conjunction with a Network Performance
Workshop; for more information on these workshops (upcoming and past), see:
http://e2epi.internet2.edu/network-perf-wk/.

http://e2epi.internet2.edu/network-perf-wk/

NDT is the Network Diagnostic Tool, currently being modified for use with E2E piPEs
and the Abilene Measurement Infrastructure. More information on this tool can be found
at: http://e2epi.internet2.edu/ndt/.

This cookbook has two parts: an Overview of the tool, with examples of its usefulness,
and an Installation Guide, that walks you through setting up NDT servers at your
location.

An Overview of the Web100-Based NDT

Motivation
The major objectives for developing this tool are to:

 Measure performance directly to users desktop
 Develop a diagnostic tool that doesn’t use historical data
 Combine numerous Web100 variables to analyze connection
 Develop network signatures for ‘typical’ network problems

It is difficult or impossible for a campus administrator to run repetitive tests to every
desktop on site. Even if it were done, running enough tests to get a statistically valid
baseline for every desktop or laptop computer is extremely difficult. A better approach is
needed to allow this type of testing to occur on an as-needed basis. The NDT tester meets
these objectives and allows users to self-test their desktop or laptop computer when they
suspect a problem exists. The results include measured results, analysis of those results to
point out common problems, some basic suggestions on how to fix them.

Methodology
The NDT is designed to identify both performance problems and configuration problems.
Performance problems affect the user experience, usually causing data transfers to take
longer than expected. These problems are usually solved by tuning various TCP
(Transmission Control Protocol) network parameters on the end host. Configuration
problems also affect the user experience; however, tuning will not improve the end-to-
end performance. The configuration fault must be found and corrected to change the end
host behavior. To accomplish these tasks, the tool will:

 Identify specific problem(s) that affect end users
 Analyze problem to determine ‘Network Signature’ for this problem
 Provide testing tool to automate detection process

Web100-Based Approach
The majority of the traffic on the Internet uses the TCP to reliably deliver IP data packets
between two communicating hosts. The major advantage of TCP is that it automatically
recovers from faults and errors to ensure that the application data is successfully
transferred from source to destination. The major disadvantage is that every problem TCP
encounters results in a slow-down of the data transfer. This makes it difficult to
determine why the connection slowed down.

http://e2epi.internet2.edu/ndt/

The Web100 project was designed to address this problem, by exposing many of TCP’s
internal variables. Thus, users and applications are able to identify the reasons why each
TCP connection receives the measured performance.

The NDT performs the following tasks:

 Simple bi-directional test to gather E2E data
 Gather multiple data variables from server
 Compare measured performance to analytical values
 Translate network values into plain text messages

An analogy is that repetitive tests build up an historical record that can point out when
changes occur (a depth of measurement data). The NDT relies on multiple data variables
(a breadth of measurement data) to achieve similar results.

Figure 1.1. Web-based Java client

Benefits
The NDT has the following benefits:

 End user-based view of network
 Can identify configuration problems
 Can identify performance bottlenecks
 Provides some ‘hard evidence’ to users and network administrators to reduce

finger pointing
 Doesn’t rely on historical data

The biggest benefit is that the tool may be run by any user on an as-needed basis. This
allows the user to self-test their network connection and their desktop or laptop computer
in a real environment. Other tests that replace the host with a well -known test machine
may measure the network infrastructure, but they do not measure the host stack or look
for transient problems. This can lead to confusion and finger pointing when the network
staff says “no problem found” but the user is still in the dark about what problems exist
and, more importantly, how they can be fixed.

In addition, providing hard evidence is necessary to make the user feel that something
can be done to improve their situation. The NDT operates on any client with a Java-
enabled Web browser; further:

 What it can do:
• Positively state if Sender, Receiver, or Network is operating properly
• Provide accurate application tuning info
• Suggest changes to improve performance

 What it can’t do:
• Tell you where in the network the problem is
• Tell you how other servers perform
• Tell you how other clients will perform

Figure 1.1 shows the web-based Java client. Using this client means the applet
automatically downloads into the client, eliminating the need to pre-install the software
on the client machine. This is a plus when a new user wants to test; nothing must be pre-
loaded before a test can begin.

It is also important to define the NDT strengths and deficiencies (see below). Note that
the performance tuning information is based on getting to the NDT server, not the real
application host. Thus, the tuning information may be suspect but it should provide the
right trends in setting buffer sizes.

Figure 1.2. Problem: TCP buffer size too small

As noted above, it’s important to define what the NDT can’t do. There is enough
variation is the Internet and in individual hosts that running a test to one desktop will not
provide any help in determining how another computer will operate. Neither does it help
tell you how your desktop will operate when talking to a different server (system load,
file system constraints) all play a role in the wall clock time required to complete a
specific task.

Internet2 E2E piPEs Project
The focus of this effort is to develop an end-to-end measurement infrastructure capable of
finding network problems. The tools used by this project include the Bandwidth Test
Controller (throughput), One-Way Ping (latency), and NDT (last mile issues). Each of
these tools has a cookbook similar to this one. They can all be accessed through
http://e2epi.internet2.edu/library-list.html.

http://e2epi.internet2.edu/library-list.html

Figure 1.3. Small TCP buffer size problem solved

Bottleneck Link Detection
What is the slowest link in the end-2-end path? NDT:

• Monitors packet arrival times using libpcap routine
• Uses TCP dynamics to create packet pairs
• Quantizes results into link type bins (no fractional or bonded links)

This is the first major task: find the bottleneck link speed. For example, suppose you have
a 10/100/1000 interface card and the intra-building network is GigE-based. In this case,
you might reasonably expect that your desktop could transfer files to/from a Gig-E
attached server at 1000 Mbps. However, assume that the switch feeding your wall jack
was only a FastE network port. Your throughput would be limited to 100 Mbps – far less
than you expected. To determine if a problem really exists, you would need to know the
true end-to-end path capacity. The NDT easily will supply this information by telling you
that the bottleneck is a FastE link somewhere in the path. You could then talk to your
network administrator to find and replace this slow link to obtain the expected
performance.

Another example: suppose the path takes you through a slow exchange point and there is
a backup Ethernet link being used while the normal FastE link is down for some reason.
The NDT will report that a bottleneck Ethernet links exists. Again, this message can
quickly point out that a configuration problem exists instead of a performance problem.

This will prevent users from spending numerous hours trying to tune the host to achieve
better performance.

Figures 1.2 and 1.3 illustrate the benefit of this approach. In Figure 1.2, we see that a host
achieves almost 90 Mbps while receiving only 13 Mbps during transmission. Just looking
at those results, it is not possible to determine if this is the expected speed or why the
difference occurs. If you look closely at the messages that appear below the speeds, you
see that the NDT determined that the slowest link in the end-to-end path is a 100 Mbps
Fast Ethernet link. With this information, we can determine that the client-to-server
direction is achieving over 88% of the maximum network capacity. This means that little
could be done to improve things.

However, this does not answer the question of why the server-to-client speed is so slow.
Again, if you look down at the messages, you see that the speed is limited due to the TCP
buffer setting (62 Kbytes) on the desktop client. Re-running the test, but with a larger
TCP buffer (2 Mbytes) shows a jump in the server-to-client speed. The user now has two
choices:

1) Manually specify a larger TCP buffer size every time an application runs, or
2) Have the system administrator increase the default TCP buffer size.

Figure 1.4. Duplex mismatch detected

Either option will allow the host to achieve better performance over the long network
path used in this test. Also, notice that the NDT client suggests a buffer size to maximize
the application speed.

The NDT uses packet dispersion techniques; e.g., it measures the inter-packet arrival
times for all data and ACK packets sent or received. It also knows the packet size, so it
can calculate the speed for each pair of packets sent or received. The results are then
quantized, meaning that the NDT doesn’t recognize fractional link speed (Ethernet, T3,
or FastE). It also wouldn’t detect bonded Etherchannel interfaces.

Duplex Mismatch Detection
Duplex mismatch is a condition whereby the host Network Interface Card (NIC) and
building switch port fail to agree on this basic network operating parameter. While this
failure will have a large impact on application performance, basic network connectivity
still exists. This means that normal testing procedures (e.g., ping, traceroute) will report
that no problem exists while real applications will run extremely slowly.

Figure 1.5. Duplex mismatch problem resolved

The NDT is designed to identify when this problem exists. To accomplish this, we:

 Developed an analytical model to describe how Ethernet responds,
 Expanded the model to describe UDP and TCP flows,
 Developed a practical detection algorithm, and
 Tested models in LAN, MAN, and WAN environments.

Improving the detection of this problem has been the focus of recent work. We have an
analytical model and a detection algorithm was created based on this model.

Figures 1.4 and 1.5 show how this problem manifests itself and how the NDT reports the
problem. In Figure 1.4, a test was run with a duplex mismatch condition in the network
path. The asymmetric speeds clearly show that something serious is wrong, but is it a
performance or configuration problem? In this case, the user may not notice a problem
while uploading files to a server, but she notices that downloading takes a very long time.
Also, notice that basic connectivity does exist so the network administrator would be hard
pressed to determine what exact problem exists.

However, the NDT clearly states that a duplex mismatch condition exists to aid the
network administrator in understanding that a real problem is occurring. The
administrator can look at the various switches and routers in the path to determine which
link has the fault. In most cases, this fault will exist in the link connecting the user’s
desktop to the rest of the network. Figure 1.5 shows how performance is improved when
the mismatch condition is resolved.

Future Enhancements
In addition to detecting the previously mentioned conditions, development work is
continuing. Future versions will perform:

 WiFi detection
 Faulty Hardware detection
 Congestion modification
 Full/Half duplex detection

IEEE 802.11 (WiFi) Detection
The main goal for this is to detect when a host is connected via wireless (WiFi) link:

• Radio signal changes strength
• NICs implement power saving features
• Multiple standards (a/b/g/n)

Faulty Hardware Link Detection
The main goal for this is to detect non-congestive loss due to:

• Faulty NIC/switch interface
• Bad Cat-5 cable
• Dirty optical connector

Preliminary works shows that it is possible to distinguish between congestive and non-
congestive loss.

Full/Half Link Duplex Setting
The main goal for this is to detect a half-duplex link in end-to-end path; NDT will
identify when throughput is limited by half-duplex operations. Preliminary work shows
detection is possible when link transitions between blocking states. The issue is
maximizing performance; a half-duplex link will not achieve as high a speed as a full
duplex link. Note: Old Ethernet hubs require half-duplex operation.

Normal Congestion Detection
Shared network infrastructures will cause periodic congestion episodes; the goal is for
NDT to:

• Detect/report when TCP throughput is limited by cross-traffic
• Detect/report when TCP throughput is limited by own traffic

The issue is to detect when your traffic is sharing the network infrastructure with other
users. In this case, you should get 1/Nth of the bottleneck link speed. It would also be
nice to know when TCP is entering the congestion avoidance phase.

Functions and Features
The NDT tester is a client-server based tool that consists of two major components. Two
server -side programs handle the web-based interface and testing/analysis of the network
path. In addition, a client program, Java-based and command line –based, allow various
clients to run tests.

The server programs contain these basic features:

• Basic configuration file (the admin can store run time options in a configuration
file)

• FIFO scheduling of tests (NDT will handle multiple request in a First-In, First-
Out manner; others wait in a queue for service)

• Simple server discovery protocol (allows multiple servers to find each other when
operating in Federated mode)

• Federation mode support (allows multiple servers to redirect clients to the
‘closest’ NDT server)

• Command line client support (allows administrators to run test remotely without
access to web browser)

Availability
This project was created as an open source product; see the sourceforge.net project page
(http://www.sourceforge.net/projects/ndt) for more information. The tool, as well as the
source code, is available at: http://e2epi.internet2.edu/ndt/download.html. Email-based
discussion lists are available; go to http://e2epi.internet2.edu/ndt web site and choose:

• ndt-users – General discussion on NDT tool
• ndt-announce – Announcements on new features

Flow Chart

http://www.sourceforge.net/projects/ndt
http://e2epi.internet2.edu/ndt/download.html
http://e2epi.internet2.edu/ndt

Figure 1.6. Basic flow chart for the NDT program

1) The process starts with the user opening a browser and entering the NDT server URL

a) An optional step is to point to a well known server and accept a redirect message
(Federated mode)

b) Otherwise the URL points to the NDT server itself (either an apache web server
or the fakewww process answer the request)

2) The web server responds by returning the page, with an embedded java applet (class
or jar file)

3) The user must manually request a test be performed by clicking the “start” button
4) The applet opens a connection back to the server’s testing engine (web100srv

process)
5) A child process is created to handle the test and the parent goes back to listening for

more test requests. The parent keeps a FIFO queue to process multiple requests.
6) A control channel is created between the server and client to control the client’s

actions and synchronize the start of the various tests.
7) The client opens two new data channels back to the client for testing purposes.

Allowing the client to open connections makes it easy to get past client-side firewall
boxes.

8) The client opens and closes a connection to perform the middle-box test
9) The client streams data back to the server to measure the clients upload speed.
10) The client opens another connection and the server streams data back to the client

measuring the clients download speed
11) The server extracts the Web100 data and analyzes the connection for faults.
12) The results are recorded in the servers’ log file and the results are returned to the

client for display to the user.

Client

 Java

Web
Browser

Applet

NDT - Server

Well Known
NDT Server Web Request

Redirect msg
Web

Server Web Page Request

Web page response

Testing
Engine Test Request

Child
Test Engine

Spawn child Control Channel

Specific test channels

Publicly-Accessible Servers
Below is a list of servers on the Abilene network, and other public servers. Note: This is
not a complete list; more are being added as they become available. In addition, several
institutions run private servers, notably DoD and possibly DoE NNSA. There are no
restrictions on the use, other than the University of Chicago public license requirement.

Figure 1.7. Publicly-accessible NDT servers

Examples and Observations
After running a public server for several years, here are several observations:

 Changing desktop effects performance
 Identifying faulty hardware is key to many performance problems
 Mathis et.al formula occasionally fails

First, it is important to test to the users desktop; having the network staff show up with a
‘good’ laptop doesn’t help much. As an example, during early testing one laptop client
with a 10 Mbps Ethernet NIC saw 7 Mpbs (70% utilization), which is good for a half-
duplex connection. Some timeouts and retransmission occurred (probably due to the half-
duplex nature of the link). When informed of this loss, the network admin arrived with a
‘tuned’ laptop and ran a test with a 100 Mbps NIC, finding good throughput (85%
utilization) and no loss. His conclusion was that there was no network problem to report.
What is the typical user experience? “I see a problem but the network staff says no
problem was found.” This situation leads to finger pointing and bad feelings because the
user doesn’t get a solution and is told to live with the perceived problems.

Figure 1.8 shows another example of transient problems in a lab setup where 12 desktop
computers were connected to the same Cisco switch, with two vLANs and a Cisco router
between them. (These tests are vLAN to vLAN, e.g., through the router, and, in the first
four cases, everything is 100 Mbps full duplex.) There is an order of magnitude
difference in RTT (Round Trip Time), a factor of four in speed differences, and no

correlation between speed and RTT. Also, loss never reaches 1%. In the last two cas
one of the hosts was changed to a 10 Mbps link. Again, we see an order of magnitude
change in RTT but speed remains constant and loss is below 1%.

es,

ing Results

he specific conditions for each case are:
 with 100 Mbps full duplex links.

ors in the
d

Case 3:

Case 4: gestion on the

Case 5:).
 increased loss/second

agine what happens with GigE-attached servers and FastE attached clients. Would

ccasionally the Mathis (et al) formula fails. This formula describes the relationship

Estimate = (K * MSS) / (RTT * sqrt(loss))
ktsOut - AckPktsOut)

his formula describes the normal operating mode for a Reno TCP connection. In a

normally operating network, the following condition should hold:

00 Mbps FD 1
Ave Rtt %loss loss/sec

5.41 0.00 0.03

Figure 1.8. LAN Test

T
Case 1: Everything is operating normally,
Case 2: The router had a bad interface module, and it was reporting these err

router logs, note loss/sec rate. However, a typical end-user would not be allowe
to examine the routers statistics so would be unaware that this problem existed.
In this case, the TCP traffic is flowing in the opposite direction but the bad
router interface is still present. (Who would report a problem?)
Three pairs of hosts are testing at the same moment, causing con
shared router links (should be reported as normal).
One of the hosts is set to 10 Mbps (normal operation

Case 6: The faulty router interface is again in the path. Note the
rate, but speed is still good.

Im
anyone complain?

O
between throughput, packet size, RTT, and loss rate. It is expressed as:

• old-loss = (Retrans - FastRetran) / (DataP
• new-loss = CongestionSignals / PktsOut

T

1.38 0.78 15.11
6.16 0.00 0.03
14.82 0.00 0.10

0 Mbps

0 0.01 0.03

 Speed
94.09 Good

C
se

6.99 Good
C

22.50 Bad NI
82.66 Bad rever
33.61 Congestion

 1
72.8

7.15 Bad NI8.84 0.75 4.65

Estimate < Measured (K = 1)

• old-loss 91/443 (20.54%)

As noted, the NDT server is reporting that some connections don’t conform to this model.

 isn’t clear why this discrepancy exists.

• new-loss 35/443 (7.90%)

It

Installation Guide: How-To Setup your Own NDT Server

Components
NDT has two major components:

 Web100-based server programs
• Testing and analysis engine
• Optional ‘lite’ web server

 Two different client programs
• Java Applet-based client that requires JVM browser plugin installed in client
• Command line-based client that requires executable for specific client

operating system

These are the NDT components needed to run a server. Everything is contained in a
single downloadable tar file. Files are stored on the Internet2 End-to-End Performance
Initiative (E2Epi) web site at: http://e2epi.internet2.edu/ndt/download.html.

Hardware Requirements
The NDT system does not place a tremendous set of demands on a host. The basic
question is: can it operate in the environment specified by the network administrator? If
the primary client is located on a campus with an Ethernet, WiFi, or Fast Ethernet
network connection, then a low-powered server would suffice. If the primary goal is to
serve Gigabit Ethernet-connected hosts, transcontinental, or international clients, then a
more powerful host will be required.

Minimum requirements for a campus only server are:

• 500 MHz Intel or AMD CPU
• 64 MB of RAM
• Fast Ethernet

If you can purchase a new or better machine, an optimal server for the future would be:

• 2 GHz or better processor
• 256 MB of RAM
• Gigabit Ethernet

Disk space is needed for executables and log files, but there is no disk I/O involved
during testing. Thus, any disk capable of holding the basic Linux operating system would
suffice for a basic NDT server.

Software Requirements
Web100 enhancements that are needed are:

• Linux kernel
• User library

Other third-party software needed to compile source includes:

http://e2epi.internet2.edu/ndt/download.html

• Java SDK
• pcap library
• Client uses Java JRE (beware of versioning issues)

And, of course, the NDT source file – test engine (web100srv) requires root authority.

Recommended Settings
There are no settings or options for the Web-based java applet. It allows the user to run a
fixed set of tests for a limited time period. The command line client does support the
setting of TCP buffer size, allowing the user to experiment with various settings.

The test engine has numerous options that allow the administrator to control many
functions. The basic options that will improve the usability of the system include:

• Turn on admin view (-a option)
• If multiple network interfaces exist, use the –i option to specify correct interface

to monitor (ethx)

And, for the simple Web server (fakewww), it is recommended that you use the –l fn
option to create a log file.

Potential Risks and Alternatives
Note that a non-standard kernel is required and the GUI tools can be used to monitor
other ports. Also, public servers generate trouble reports from remote users. The owner of
an NDT server must decide whether to respond to trouble reports or simply ignore
emails. Another potential risk is that test streams can trigger IDS alarms – the solution to
this is to configure IDS to ignore the NDT server.

Alternatives include other tools that can perform client testing, such as:

• Several web sites offer the ability for a user to check PC upload/download speed.
• Internet2/Surfnet Detective
• NCSA Advisor

Building the Server
Build basic Linux system using your favorite Linux distribution. Then, obtain the
Web100 files from the Web100.org web site:

• http://www.web100.org/download
• Pre-built kernel in rpm format
• Patch file in tar format
• System Library and Utilities package in tar format

Download the latest version of the pre-built kernel or patch file and userland library files.

Choosing a Kernel
When choosing a kernel, the user has two basic choices: using a pre-built kernel or
building a custom kernel.

http://www.web100.org/download

Using a Pre-Built Kernel:
Install the pre-built kernel rpm (RedHat package Mmanager):

• rpm –i kernel-web100-version.rpm

Modify the boot loader config file:

• /etc/grub.conf or /etc/lilo.conf

Reboot the system and test the new kernel.

Build a Custom Kernel:
Download the base kernel from the kernel.org ftp site:

• ftp ftp.kernel.org and change directory to the proper Linux kernel directory

Unpack the kernel tar file in the /usr/src directory, unpack the Web100 kernel patch, and
apply the patch:

• patch –p3 < path-to-kernel-patch-file

It is important to note that kernel patch files are keyed to a specific version of the Linux
kernel. You must look at the Web100 kernel readme file to determine which kernel
version you need to download/patch.

Configure and build the new kernel; note: you must enable “Prompt for development
code …” so that Web100 options appear under “Networking Options.” Modify the boot
loader configuration file, reboot, and test the new system.

[Note that the Linux configuration procedures are beyond the scope of this paper. If the
administrator isn’t familiar with them, then the pre-built kernel is a better choice. Also,
the kernel configuration menu and build procedures for 2.4.x kernels are different from
2.6.x kernels.]

Building the Web100 Library
Unpack the Web100 user library tar file. Use the standard GNU automake commands:

• Change directory to package directory
• Create local make files (./configure {--prefix=dir})
• Build library and utility files (make)
• Install library and utility files (make install)

Once the kernel is built and running, it will automatically begin collecting data on every
TCP connection to/from the server. The user library file contains the routines needed to
extract that kernel data from the system. The administrator can verify that the kernel is
recording properly by using the /usr/local/bin/gutil program. This X-windows based GUI
allows the administrator to monitor any TCP connection going to/from the server.

ftp://ftp.kernel.org/

Obtaining the Java Software Development Kit (SDK)
The administrator must download and install a Java SDK, which is required to build the
applet client code. The SDK contains the Java compiler (javac) and archive builder (jar)
programs. These executable programs need to be in the path or the NDT build process
will fail. Since the administrator can put the SDK files anywhere on the system (there is
no default path), the administrator must do this manually.

Download SDK from the Sun Microsystems web site (http://java.sun.com). Versions
1.2.2, 1.3.1, and 1.4.2 have been tested with NDT. Note: version 1.4.2 may cause old JRE
clients to fail. Follow the package instructions to install the SDK file. Once installed, add
the SDK bin directory to the path:

• export PATH=$PATH:/sdk/path/bin

Obtaining Libcap Library
The pcap library provides raw access to the network interface. The NDT uses packet pair
dispersion techniques to determine the bottleneck link speed/type. This means that the
libpcap.so runtime libraries must be installed on the NDT server. This library is a
standard part of all Linux distributions. The administrator should check the NDT server
to ensure they were installed when the system was built. The command:

ls /usr/lib/libpcap*
– will return several files if the libraries are installed. If they are not installed, obtain the
rpm from your favorite mirror site or download and install the source from the
http://www.tcpdump.org web site.

Building the NDT Programs
Once all the pre-requisites are installed, the admin is now ready to create the NDT
system. Simply grab the latest tarball at http://e2epi.internet2.edu/ndt/download.html,
unpack the tar file, and use the standard GNU automake tools to create and install the
executables:

• Change directory to package directory
• Create make files (./configure {--prefix=/some/dir})
• Build executables (make)
• Install executables (make install)

This process creates both server programs (web100srv and fakewww), the client tools
(analyze, web100clt), and it builds the java class and jar programs. The make install
process puts all the executables in the proper place.

Customizing the Installation
Once the executables are installed, the base NDT web page needs to be built. The tarball
contains a template and a simple shell script to aid in the creation of a customized web
page. To create a custom NDT web page:

• Run the script ./conf/create-html.sh and follow the prompts
• Script will prompt for installation directory, use prefix= value and append /ndt

http://java.sun.com/
http://www.tcpdump.org/
http://e2epi.internet2.edu/ndt/download.html

Use the conf/start.ndt script as sample for starting server processes. The conf/ndt script
can be copied into the /etc/init.d directory for boot time startup (see chkconfig man page
on RedHat systems for more details). Once the base web page is created, you are ready to
start the server processes. The scripts provided will simplify the start process.

Customizing the Server
The admin has to make a choice: run the included web server (fakewww) or a full blown
web server (apache). The start scripts assume you will start the included (fakewww)
server. This server contains a list of file names that it can return to the client. This
reduces the vulnerability of the system and prevents the server from processing requests
from malicious users. The log file is useful to help monitor what is being requested.

Some useful options for the included web server (fakewww) are:

• Set an alternate port number (-p80)
• Run in Federated mode (-F)
• Log web requests (-l logfile)

The test and analysis engine (web100srv) must be operating for the system to work. The
user will get an error message if this process is not running. Note that the server uses
three TCP ports to run these tests. The administrator is responsible for ensuring that any
site firewall or router filter is configured to pass these ports. The defaults are 3001, 3002,
& 3003. Some useful options to use with the testing engine (web100srv) are:

• Generate basic usage information (-a)
• Use fixed configuration file (-c)

Note that both server program and the command line client accept debugging (-d) flags.
Multiple levels of debug messages are available and levels increase when multiple –d
flags are specified (e.g., -ddd specifies levels 0 to 2). In addition, the server programs
will respond to the help (-h) flag by displaying basic usage information.

Creating a Federated Server
In some cases, it is beneficial to run multiple NDT servers in a collaborative manner. As
noted above, the NDT server can identify both configuration and performance problems.
The assumption is that configuration problems are more serious than performance
problems and they usually occur near the client host. This means that testing to the
‘closest’ NDT server makes finding configuration problems easier. Operating a collection
of NDT servers in Federated mode accomplishes this task.

Simply run traceroute form each NDT server to every server in your federation:

• Save output in file (/tmp/traceroute.data)
• Figure 2.1 shows a sample script
• Note: blank line is required between traces

Once this data file is created it can be turned into a binary tree file:

• /usr/local/bin/tr-mkmap –b {-f fn}

Note: You may create a cron job to automate this process!

Figure 2.1. Simple Traceroute Script

Verifying the Operation
The basic checks an administrator can perform to ensure that everything is operating
properly include:

1) Check the process table
• ps auxw | grep fakewww
• ps auxw | grep web100srv

2) Check the TCP port status
• Fakewww = netstat –nat | grep 7123
• Web100srv = netstat –nat | grep 300

 Note: ports 7123 & 3001 in listen state
3) Make sure the server is monitoring the correct network interface. Note that at the

current time the web100srv process needs to know which interface to monitor. If
the server has multiple interfaces, then the admin needs to specify the primary
interface and all test traffic must go through this interface. Check interface for
link detection:
• netstat –nr

Building a Custom Command Line Client
If desired, you can build a custom command line client for multiple operating systems:

• Download and unpack the latest NDT package
• Run the automake ./configure command
• Change directory to the src subdirectory and build the client (make web100clt).

[Note: Web100 lib or kernel not required.]

This is an optional step. The administrator only needs to perform this step if they want to
run the command line client on another host. You need to change to the src sub-directory
and invoke make with the web100clt argument. If you don’t then the make will fail
because it wouldn’t find the Web100 libs needed for the server program. NDT has been
built on several different hosts (FreeBSD, IRIX, Mac OS-10, and Cygwin), so it should
work on others.

Additional Features
There are man pages for all the server programs. The analyze program can read/parse the
log file and report what’s been happening. Finally, the server programs will log all
activity so the administrator can monitor it.

Obtaining the Test Results
Two 10-second tests, one in each direction, are run between the Client and Server. No
diagnostic data is collected. Then, it runs a 10-second test from Server to Client; Web100
diagnostic data is collected at the end of test. Last, it prints out a summary status
message:

• Link speed and duplex
• Informational or Warning messages

Note that you don’t get a lot of good data when the server is receiving the data stream.
After the tests have finished, a brief summary is printed stating what the bottleneck link is
and a guess as to what duplex condition (full or half) exists. Finally any major problems,
such as duplex mismatch, are reported.

Analyzing the Test Results
When the user clicks the “statistics” button a pop-up window is created. This window
holds some additional details:

• Send and Receive throughput achieved
• Details for five configuration tests (link type, duplex mode, congestion, excessive

errors, and duplex mismatch condition)
• Throughput limits section (%S-R-N limited, RTT, %loss, %out-of-order)
• Negotiated settings (TCP modifications to improve performance)

Such information as the percentage of time the connection spend in one of the Web100
triage states (sender limited, receiver limited, or network limited) is reported. It also
reports loss, out-of-order, RTT, and MSS values. Finally, the TCP options that can be
enabled/disabled are listed. Note that these are the negotiated values, not the configured

values. A middlebox might disable one or more of these options and, right now, NDT
can’t determine if that happened.

The “more details” button generates another pop-up window. This window contains a
listing of all the Web100 and derived variables used by the server to perform the analysis.
The client program simply prints out the pre-computed answers. It also provides some
performance tuning Information:

• Individual TCP counters collected by Web100
• Conditional test parameters
• Throughput analysis section including theoretical limits, bandwidth*delay

products, loss rate, and buffer sizes

The “report problem” button provides a simple way to send in a trouble report. When this
button is pressed, the applet creates an email message, via the clients default email
program. The content of this email is automatically filled in with the test results.
Hopefully, the user will annotate this email to say exactly what the trouble is. Lastly, the
admin can look at the server log files to ensure that no operational problems exist.

The server logs all counter variables used for condition tests.

	Network Diagnostic Tool (NDT): An Internet2 Cookbook
	Disclosure/Disclaimer
	An Overview of the Web100-Based NDT
	Motivation
	Methodology
	Web100-Based Approach
	Benefits
	Internet2 E2E piPEs Project
	Bottleneck Link Detection
	Duplex Mismatch Detection
	Future Enhancements
	IEEE 802.11 (WiFi) Detection
	Faulty Hardware Link Detection
	Full/Half Link Duplex Setting
	Normal Congestion Detection

	Functions and Features
	Availability
	Flow Chart
	Publicly-Accessible Servers
	Examples and Observations

	Installation Guide: How-To Setup your Own NDT Server
	Components
	Hardware Requirements
	Software Requirements
	Recommended Settings
	Potential Risks and Alternatives
	Building the Server
	Choosing a Kernel
	Using a Pre-Built Kernel:
	Build a Custom Kernel:

	Building the Web100 Library
	Obtaining the Java Software Development Kit (SDK)
	Obtaining Libcap Library
	Building the NDT Programs
	Customizing the Installation
	Customizing the Server
	Creating a Federated Server
	Verifying the Operation
	Building a Custom Command Line Client
	Additional Features
	Obtaining the Test Results
	Analyzing the Test Results

