OSCARS Access Policy

Draft May 30, 2007

Introduction

This document describes the current design for access control in OSCARS. It was intended as an
guide to the implementation and is missing much in the way of motivation or justification. The
main points of the design are: We have tried to keep it as simple as possible with the intent that
more features can be added when they are needed. Authorization is based on attributes which can
include the identity of the user, or membership in a group, or a role. A user gets the maximum of
all the privileges granted to all of the attributes that he has. We are currently intending to
authorize a reservation that has been forwarded to ESnet from an adjacent domain based on the
attributes assigned to that domain rather than the end user who is requesting the reservation. The
name of the user is included in the forwarded request, so it can be used for auditing purposes or
can later be used for authorization. All access decisions are made by one of two methods which
are called from each place in the code that is about to grant some access. Some underlying
assumptions are: Most users will get their permissions by being members of a group/role, rather
than by individual grants. The number of group/roles will be small. The number of resources and
permissions will be small. While the implementation may scale to larger numbers, the ability of
the users and administrators to understand it will not. There will be web page interfaces to see and
set user permissions.

Access policy

The following paragraphs list the various actions that we want to control with respect to the
resources that OSCARS controls.

User access policy

* see own profile

* modify own profile

* list all users

* see all user profiles

* add/delete a user

* modify any user profile

* grant or remove authorizations for any user

Reservation access policy

* make unlimited reservation

* make reservation with bandwidth constraint
* make reservation with duration constraint

* make reservation with topology constraint

* list own reservations

* query own reservations

* cancel, modify own reservation

¢ list all reservations

* query any reservations

* cancel, modify any reservations

Topology access policy (not implemented yet)
* view abstract topology
* view real topology
* modify the topology

Policy Implementation

We have a policy based implementation where the access policy is stored in a set of tables, and an
access decision is made by doing a table lookup based on the requestor, the action requested and
the resource. Authorization may have constraints attached, in which case the parameters of the
request must meet the constraints.

The following tables define the components for authorization:
* users — contains an entry for each registered user, containing among other things, user
loginld, certSubject and certlssuer

* resources — has three entries: users, reservations, topology where topology is the
information about specific paths and routers.

* permissions — has four entries: list, query, create and modify

e}

e}

e}

e}

list — shows minimum information about a reservation or user
query — shows all information about a reservation or user
create — allows a new user to added or a reservation to be created

modify — allows deletion of a user and modification to a user profile or
cancellation or modification of a reservation.

e attributes — has entries for attributes on which authorization is granted, e.g. ESnet-
engineer, ESnet-developer, ESnet-admin, ESnet-user and explicit user attributes for users
with specific permissions, e.g. user-david. There is an attribute-type field as well which is
currently not used.

e userAttributes - maps userlds to the attributes they possess

* constraints - The current constraints that are supported are:

e}

e}

o

e}

max-bandwidth (int), applies to create and modify reservation
max-duration (int), applies to create and modify reservation
specify-path-elements (boolean), applies to create and modify reservation

all-users (boolean), applies to everything except create reservation.

* authorization - combines these elements into a row for each action that each user is
permitted. Each row consists of an attribute id, a resource id, a permission id and
optionally a constraint that applies to this authorization.

In order to base authorizations on attributes other than the user identity, we need a way to assign
attributes to users. Users may have 1 or more attributes. Attributes are arbitrary strings, defined in
a table, e.g. ESnet-Engineer, Atlas-PI, CMS-member.

The advantage of attributes is that it allows a set of authorizations to be crafted which can then be
applied to a class of users. Otherwise, each time a new user registers, he must be given the correct

and complete set of permissions for whatever he wants to do. In our example above, if a new
network engineer , Ned, arrives, we would need to duplicate all the authorization entries that ed
has for him. If we had just entered those authorizations for "ESnet-Engineer" then we would just
need to assign Ned that attribute. It also makes the tables smaller and thus may make it easier to
understand the global picture of who has what permissions.

With attribute-based authorization, the PDP will need to look up user attributes, then look up
authorizations for each attribute the user has and merge them (take the maximum of the
permissions).

Note: <ed>,<david>,<chin>, <andy> are indices in the users table.
<ESnet-eng><ESnet-dev>,<user-chin>,<user-david> are indices in the attributes table.

A user would only need an "id-entry" in the attribute table if some authorization was to be
granted explicitly to him. It is probable that a user will get all his authorizations based on group
attributes.

Default behaviors

* Ifauser has no entry in the user table, any attempted OSCARS access will be rejected
immediately by Oscars:OscarsSkeleton:checkUser or Servlets: AuthenticateUser

e If'there are no attributes for the user in the userAttribute table access will be rejected
immediately by Oscars:OscarsSkeleton:checkUser or Servlets: AuthenticateUser

* If no attribute that the user possesses has an entry for the resource/permission pair in the
authorization table, the request is denied.

* The constraint defaults are intended to be the most common cases, not the most restricted.

* If there is no max bandwidth constraint specified, there is no limit on the bandwidth
that may be requested.

e Ifthere is no duration constraint, unlimited duration and persistent reservations are
allowed.

* If no all-users constraint is specified, the default is false (only access to own
information is allowed).

* If specify-path-elements is not specified, the default is false and no routers or hops
may be input.

Example

We have users alice, bob, ed, david chin and andy. Alice and bob have all their permissions
individually assigned. Ed, chin and andy get all their permissions from group attributes.David get
most permissions from groups but has one more added individually.

attributes Table

id (int) attribute name (string) attribute type (int)
| ESnet-engineer group
2 ESnet-developer group
3 ESnet-user group
4 ESnet-administrator group
5 HOPI-developer group

6 user-bob user
7 user-alice user
8 user-david user

userAttributes table

id (int) loginld (int) attribute id (int)
1 <ed> <ESnet-eng>
11 <david> <user-david>

8 <david> <ESnet-admin>
9 <david> <ESnet-dev>

3 <chin> <ESnet-eng>

4 <chin> <ESnet-user>

5 <chin> <ESnet-dev>

6 <andy> <HOPI-dev>

7 <andy> <ESnet-user>
13 <alice> <user-alice>

14 <bob> <user-bob>

Authorization Table

id attributeld resource permission | constraint name value
(int) | (int) (string) (int)
1=true,
O=false

<user-alice> users list null [1]
<user-alice> users query null [1]
<user-alice> users modify null [1]
<user-alice> reservations | create max-bandwidth 10M
<user-alice> reservations | create max-duration 600min
<user-alice> reservations | list all-users 0
<user-alice> reservations | query all-users 0
<user-alice> reservations | modify all-users 0
<user-alice> reservations | modify max-bandwidth 10M
<user-alice> reservations | modify max-duration 600min
<user-bob> users list all-users 1
<user-bob> users query all-users 1
<user-bob> users modify all-users 1
<user-bob> reservations | create specify-path-elements | 0
<user-bob> reservations | list all-users 1
<user-bob> reservations | query all-users 1
<user-bob> reservations | modify all-users 1
<user-bob> reservations | modify specify-path-elements | 0
<ESnet-eng> users list null [2] null
<ESnet-eng> users query null [2] null
<ESnet-eng> users modify null [2] null
<ESnet-eng> reservations | list all-users |
<ESnet-eng> reservations | query all-users |
<ESnet-eng> reservations | create specify-path-elements | 1

<ESnet-eng> reservations | modify all-users 0
<ESnet-dev> users view all-users 1
<ESnet-dev> users query all-users 1
<ESnet-dev> users modify all-users 0
<ESnet-dev> reservations | list all-users |
<ESnet-dev> reservations | query all-users 1
<ESnet-dev> reservations | create max-bandwidth 10M
<ESnet-dev> reservations | create max-duration 10min
<ESnet-dev> reservations | modify all-users 0
<ESnet-dev> reservations | modify max-bandwidth 10M
<ESnet-dev> reservations | mofify max-duration 10min
<ESnet-user> users view null [2]

<ESnet-user> users query null [2]

<ESnet-user> users modify null [2]

<ESnet-user> reservations | list null [3]

<ESnet-user> reservations | query null [3]

<ESnet-user> reservations | create null [3]

<ESnet-user> reservations | modify null [3]

<ESnet-admin> users list all-users |
<ESnet-admin> users query all-users 1
<ESnet-admin> users modify all-users |
<ESnet-admin> users create

<ESnet-admin> reservations | view all-users |
<ESnet-admin> reservations | query all-users |
<ESnet-admin> reservations | modify all-users |
<user-david> reservations | create specify-path-elements | 1

Defaults

[1] same as all-users=0, selfOnly

[2] manage and view only his own user info

[3] unlimited bandwidth and duration, only modify, list and query own reservations, not input
path components.

Alice is the least privileged. She is allowed to make reservations of a limited bandwidth and
duration, and only see and modify her own information. Bob is the leader of a group making
reservations. He is allowed to make reservations of unlimited bandwidth, unlimited duration,
specify ingress, egress and hops and see and manage other users and their reservations. Ed is a
network engineer. As an ESnet-engineer he can make reservations for the purpose of testing, can
see but not modify other's reservations, can only see user information, and has free rein over the
topology. An ESnet developer can make reservations of limited bandwidth and durations, view
everybody's reservations but only modify his own, and can see and modify all user information.
An ESnet user can make reservations of unlimited bandwidth and duration, but only view his own
reservations and user information. An ESnet admin can manage all user information, see all
reservations, but not make or modify reservations. <user-david> has all the permissions of an
ESnet developer and ESnet admin and can also specify path elements when creating a
reservation.

CheckAccess Implementation

The preferred way to implement access control is to isolate the access checking in one place,
called the PolicyDecisionPoint that returns a permit or deny response and is called by all access
control points (aka Policy Enforcement Points/ PEP) to see if an action is authorized. The
aaa/UserManager classs currently provides a single VerifyAuthorizaton method that meets this
goal:

Boolean UserManager.verifyAuthorized(String user,String resource String
permission)

This needs to be expanded on in order to centralize the evaluations of constraints as much as
possible. We are suggesting two methods. The first would be called by everything except
createReservation and the second by CreateReservation.

AuthValue UserManager.checkAccess(String user, String resource, String
permission);

Lookup user in userAttribute table to get list of all attributes
For each attribute lookup ((attrld,,resource,permission) in authorization table.
If deny is returned, continue
If there is no constraint, set returnValue to SELFONLY and continue
If all-users=true is returned, return "ALLUSERS"
If all-users=false is returned, set returnValue to SELFONLY and continue
At end of loop return SELFONLY or DENIED

Authvalue UserManager.checkModResAccess (String user,String resource,
String permission, int RegBandWidth, int RegDuration, Boolean specify-
path-elements);

Start out with
ReturnValue = DENIED
bandwidthOK = false
maxdurationOK = false
specPathElemOK = false.
Lookup user in userAttributes table and get a list of attributes for this user.
For each attribute lookup and Authrorization(Attrld,resource,permission)
for the authorization returned
if the constraint is null
mark bandwidthOK=true and durationOK=true,
and returnValue=SELFONLY
if the constraint is max-bandwidth
mark bandwidthOK= true if reqBandwidth < constraintValue
if constraint is max-duration
mark durationOK if reqDuration < constraintValue
if constraint is spec-path-element
mark specPathElemOK = true
if constraint is all-users
if value = 1 set returnValue = ALLUSERS
if value = 0 set returnValue = SELFONLY
At the end of the attribute list

if bandwidthOK = false or maxdurationOK = false
return DENIED
if specify-path-element= true and specPathElemsOK = false
return DENIED
otherwise return ReturnValue

