
DCN Software Suite v0.5.1: OSCARS
Policy Service User Guide

i

Table of Contents
1 Overview ... 1

1.1 About this Document ... 1

1.2 Hardware and Software Requirements .. 1

1.2.1 System Requirements .. 1

1.2.2 Firewall Requirements .. 1

1.2.3 Third-Party Library and Package Requirements ... 1

1.3 Downloading the Policy Service software .. 2

2 Preparing your Environment ... 2

2.1 MySQL ... 2

2.1.1 Install Option 1: Manual Installation .. 3

2.1.2 Install Option 2: Automatic Installation with a Package Manager 3

2.2 Java Development Kit (JDK) ... 3

2.2.1 Do I already have the right version of Java? ... 3

2.2.2 Download and Installation .. 4

2.2.3 Setting the JAVA_HOME Environment Variable ... 4

2.2.4 Optional: Adding JAVA_HOME/bin To Your PATH Variable 4

2.3 Tomcat .. 4

2.3.1 Download and Installation .. 5

2.3.2 Setting the CATALINA_HOME Environment Variable ... 5

2.3.3 Starting/Stopping the Tomcat Server .. 5

2.3.4 Verifying a Successful Installation .. 6

2.3.5 Configuring SSL ... 6

2.4 Ant .. 6

ii

2.4.1 Download and Installation .. 6

2.4.2 Setting the ANT_HOME Environment Variable .. 6

2.4.3 Adding ANT_HOME/bin to Your PATH Variable ... 7

3 Installing the Policy Service Software .. 7

3.1 Installing the Policy Service .. 7

3.2 Starting the Policy Service ... 11

3.3 Stopping the Policy Service ... 11

3.4 Configuring the OSCARS IDC to use the Policy Service ... 12

4 Defining Policy ... 12

4.1 Policy Configuration File ... 12

4.2 Policy Classes .. 13

4.3 Rule Sets .. 15

4.3.1 Strings ... 16

4.3.2 Numbers .. 18

4.3.3 Dates ... 20

4.3.4 Booleans .. 22

4.4 Loading a Policy Configuration File .. 23

5 Logging ... 23

5.1 Default Logs ... 23

5.2 Changing Log Behavior ... 24

6 Advanced Topics ... 24

6.1 Policy Class Hierarchies .. 24

6.2 Defining Custom Rule Fields ... 26

7 Further Reading .. 27

iii

1

1 Overview

1.1 About this Document

This document will guide you through the installation and use of the OSCARS Policy Service.
The OSCARS Policy Service allows an administrator to define rules for classes of users that
provision dynamic circuit networks. It allows rules such as those that define limits to be placed
on the bandwidth of a single circuit or control access to individual network elements. This
document assumes that you have the OSCARS IDC software installed. This document also
assumes basic familiarity with the UNIX command-line. It does NOT assume any previous
familiarity with Java or XML.

1.2 Hardware and Software Requirements

1.2.1 System Requirements

The OSCARS Policy Service requires at minimum a single PC that will act as a web server for
processing requests. Most modern PCs should be suitable for running the software. The
following specifications are the minimum requirements for most installations:

 1Ghz Processor (preferably X86 architecture), 1GB memory

 Linux/Unix Operating System

 Basic Internet connectivity

 OSCARS AA Service

Requirements may be greater for systems running the OSCARS Policy Service on the same
machine as multiple other components of the DCN Software Suite.

1.2.2 Firewall Requirements

The OSCARS Policy Service runs on TCP port 8080 and port 8443 by default.

1.2.3 Third-Party Library and Package Requirements

Installing and running the OSCARS IDC requires the following software packages:

Name Supported
Version

Download Location

MySQL 5.0+
http://dev.mysql.com/downloads/mysql/

2

Java Development Kit (JDK) 5.0 http://java.sun.com/javase/downloads/index_jdk5.jsp

Tomcat 5.5 http://tomcat.apache.org/download-55.cgi

Axis2 1.4.1 http://ws.apache.org/axis2/download/1_4_1/download.cgi

Ant 1.7 http://ant.apache.org/bindownload.cgi

1.3 Downloading the Policy Service software

The Policy Service software is part of the DCN Software Suite. It can be downloaded at:

 https://wiki.internet2.edu/confluence/display/DCNSS

After downloading the DCN software suite, you may unpack it with the following commands:

% gunzip dcn-software-suite-0.5.X.tar.gz
% tar –xvf dcn-software-suite-0.5.X.tar

This will create a directory called dcn-software-suite-0.5.X. The OSCARS Policy Service is
located in the subdirectory dcn-software-suite-0.5.X/policy.

2 Preparing your Environment
This section details how to install and configure perquisite software on the machine that will be
running the IDC. The following prerequisite steps are detailed:

1. Install MySQL

2. Install the Java Development Kit and set the JAVA_HOME environment variable

3. Install the Tomcat web server and set the CATALINA_HOME environment variable

4. Install Ant and add it to your PATH environment variable

In addition the Axis2 libraries from Apache must be installed. This will be done automatically by
the OSCARS installation script as described in Section 3.

2.1 MySQL

MySQL is the database used to maintain policy information. You may install MySQL in one of
two ways: manually, by installing a package downloaded from the MySQL web site OR
automatically, using your operating system’s package manager:

https://wiki.internet2.edu/confluence/display/DCNSS

3

2.1.1 Install Option 1: Manual Installation

Download the MySQL package from the MySQL web site at:

 http://dev.mysql.com/downloads /mysql

Installing MySQL in this manner is beyond the scope of this document but installation
instructions may be found at:

 http://dev.mysql.com/doc

2.1.2 Install Option 2: Automatic Installation with a Package Manager

Download and install MySQL through a package manager if your operating system runs such a
service. A few common package managers are up2date (RedHat), apt-get (Debian), and yum.
You may install MySQL using a command such as:

% up2date mysql-server

Consult specific package managers for the exact command and package name.

2.2 Java Development Kit (JDK)

Java is the programming language in which the OSCARS Policy Service software was created
and provides the environment in which it runs. In addition to running the software, the Java
Development Kit (JDK) also contains utilities required for compiling the source code. This
section details installation and configuration related to this package.

2.2.1 Do I already have the right version of Java?

Many systems come pre-installed with Java. To install the Policy Service, your system must not
only have Java Runtime Environment (JRE) version 5 but also the various compilers and
utilities. To verify that you have the necessary Java environment, issue the following command:

% javac –version

If the first line of output reads javac 1.5.0_X, you should not need to install the Java
Development Kit and may skip to section 2.2.3 Setting the JAVA_HOME Environment
Variable. If you get “command not found” or the version number is less than 1.5, you may need
to install JDK 5.0 and should proceed to 2.2.2 Download and Installation.

NOTE: If you are not running the SUN distribution of Java you may encounter issues. The
GNU and IBM versions of Java are not fully tested and some users have reported
problems. It is recommended you run the SUN distribution of Java.

http://dev.mysql.com/doc
http://dev.mysql.com/downloads/mysql
http://dev.mysql.com/downloads/mysql

4

2.2.2 Download and Installation

You may download JDK 5.0 from Sun’s web site at:

 http://java.sun.com/javase/downloads/index_jdk5.jsp

It is recommended that you download the latest update of JDK Version 5. Choose the package
most suitable for your operating system.

Once downloaded, unpack the file; this should create a new folder named something similar to
“jdk1.5.0_X”. The final step of installation is to move this folder to an easily accessible place.
We recommend renaming the folder to java5 in /usr/local with the following command:

% sudo mv jdk1.5.0_X /usr/local/java5

The location may be anywhere you choose – just make sure you note the location as it is required
for setting the JAVA_HOME environment variable in the next section.

2.2.3 Setting the JAVA_HOME Environment Variable

Once Java is installed, you need to set the JAVA_HOME environment variable with its location.
This variable is required by the Tomcat web server (see section 2.3 Tomcat) to run. To set this
environment variable, issue these commands:

% JAVA_HOME=/usr/local/java5
% export JAVA_HOME

You may permanently set this variable (recommended) by adding the above commands to the
profile file in your home directory (i.e. .bash_profile or .profile).

2.2.4 Optional: Adding JAVA_HOME/bin To Your PATH Variable

This step is optional but may make issuing commands easier in later steps. You should add the
folder JAVA_HOME/bin to your PATH environment variable so that you can easily access the
keytool command for issuing certificates. To update your PATH variable, issue these
commands:

% PATH=$PATH:$JAVA_HOME/bin
% export PATH

You may permanently set this variable (recommended) by adding the above commands to the
profile file in your home directory (i.e. .bash_profile or .profile).

2.3 Tomcat

Tomcat is a Java-based application container in which the OSCARS Policy Service software
runs. This section details installation and basic configuration of Tomcat.

http://java.sun.com/javase/downloads/index_jdk5.jsp

5

2.3.1 Download and Installation

You may download Tomcat from the project’s web site at:

 http://tomcat.apache.org/download-55.cgi

It is recommended you download Tomcat Version 5.5.

NOTE: Tomcat 6.0 is NOT currently supported by the software.

Once downloaded, unpack the downloaded file; this should create a new folder named something
similar to “apache-tomcat-5.5.X”. The final step of installation is to move this folder to an easily
accessible place. We recommend renaming the folder to tomcat in /usr/local with the following
command:

% sudo mv apache-tomcat-5.5.X /usr/local/tomcat

The location may be anywhere you choose – just make sure you note the location as it is required
for setting the CATALINA_HOME environment variable in the next section.

NOTE: It is NOT RECOMMENDED that you download Tomcat with a package manager
such as up2date, yum, or apt-get. Many users have reported difficulty with this method. If
you install Tomcat using this method be aware that some of the environment variables and
other settings may vary from what is contained within this document.

2.3.2 Setting the CATALINA_HOME Environment Variable

Once Tomcat is installed, you need to set the CATALINA_HOME environment variable with its
location. This variable is required by the Tomcat web server to run. To set this environment
variable, issue these commands:

% CATALINA_HOME=/usr/local/tomcat
% export CATALINA_HOME

You may permanently set this variable (recommended) by adding the above commands to the
profile file in your home directory (i.e. .bash_profile or .profile).

2.3.3 Starting/Stopping the Tomcat Server

You may start Tomcat with the following command:

% $CATALINA_HOME/bin/startup.sh

You shutdown the Tomcat server with the following command:

% $CATALINA_HOME/bin/shutdown.sh

http://tomcat.apache.org/download-55.cgi

6

2.3.4 Verifying a Successful Installation

To verify installation was successful, startup the Tomcat server with the following command:

% $CATALINA_HOME/bin/startup.sh

After starting the server, point a web browser to port 8080 of the machine on which you installed
Tomcat with the following URL:

 http://your-machine-name:8080

If installation was successful, a web page will load with the Tomcat logo and a message that
reads “If you're seeing this page via a web browser, it means you've setup Tomcat successfully.
Congratulations!”

2.3.5 Configuring SSL

You may configure Tomcat to use SSL so that all requests and responses to the server are
encrypted. This is not required but highly recommended. Information on this process can be
found at:

 http://tomcat.apache.org/tomcat-5.5-doc/ssl-howto.html

2.4 Ant

Ant is a tool that is used to build the Policy Service code and deploy various configuration files
(think of it as “make” for Java). This section details how to install and configure Ant.

2.4.1 Download and Installation

Download Ant from the project’s web site at:

 http://ant.apache.org/bindownload.cgi

Most IDC testing has been done with Version 1.7. Unpack and install Ant with the following
commands:

% unzip apache-ant-1.7.0-bin.zip
% sudo mv apache-ant-1.7.0 /usr/local/ant

You are not required to install the downloaded folder in /usr/local/ant but you should note where
it is installed as this information is needed in later steps.

2.4.2 Setting the ANT_HOME Environment Variable

Once Ant is installed, you need to set the ANT_HOME environment variable with Ant’s
location. To set this environment variable, issue these commands:

http://ant.apache.org/bindownload.cgi
http://tomcat.apache.org/tomcat-5.5-doc/ssl-howto.html
http://you-machine-name:8080/

7

% ANT_HOME=/usr/local/ant
% export ANT_HOME

You may permanently set this variable (recommended) by adding the above commands to the
profile file in your home directory (i.e. .bash_profile or .profile).

2.4.3 Adding ANT_HOME/bin to Your PATH Variable

It is recommended you add the Ant bin directory to your PATH environment variable. This will
allow ant command-line tools to be found when you type-in the command name. To set this
environment variable, issue these commands:

% PATH=$PATH:$ANT_HOME/bin
% export PATH

You may permanently set this variable (recommended) by adding the above commands to the
profile file in your home directory (i.e. .bash_profile or .profile).

3 Installing the Policy Service Software
This section details how to install the OSCARS Policy Service Software. It assumes you have
installed all the prerequisites as described in the previous section (Preparing your Environment).
This section will cover installing a Policy Service.

3.1 Installing the Policy Service

Assuming you have downloaded and unpacked the OSCARS policy service, the first step is to
change your current working directory to the ‘policy’ directory of the DCN Software Suite
Package:

% cd dcn-software-suite-0.5.X/policy

The next step is to run the do_build.sh command to compile the software and build the
required database tables:

% ./do_build.sh

--- Checking prerequisites...
 We seem to be in the correct directory
 Found ant
 Environment variable CATALINA_HOME is set to
/usr/local/tomcat
 Environment variable DOMAIN_HOME is not set.
Continuing without it.
 Axis2 library not found.
 Rampart library not found.

8

The first set of prompts check if Tomcat and Axis2 are installed. If Axis2 is not installed you will
see messages like those shown above. You should answer ‘y’ to the next two questions and
proceed as shown below:

- Axis2-1.4.1 with Rampart-SNAPSHOT installation not
detected. Should I build it for you y/n?y
 OK, will build Axis2-1.4.1 for you.

- Axis2-1.4.1 is not deployed. Should I do this for you
y/n? y
 OK, will deploy Axis2 for you.
--- Downloading Axis2...

You should see output of Axis2 and the module Rampart downloading. The script will then
restart your Tomcat server. The output for the Axis2/Rampart download and the Tomcat restart is
not shown in this document, as it is rather lengthy. After restarting Tomcat you should see the
following:

--- Your kit looks good.
- Input the hostname for this Policy Service. Leave

blank for "myhost.example.org":
 Using myhost.example.org.

The first prompt asks for the hostname of your machine. If the hostname in quotations is correct
then leave blank otherwise enter the correct name before proceeding. Next you will be prompted
for information related to MySQL:

- Install databases y/n? y
 OK, will install databases.
 Found mysql client at /usr/bin/mysql
- Input the MySQL server hostname. Leave blank for
localhost:
 Using localhost .
- Input a privileged MySQL username on that host. Leave
blank for root:
 Using root .
- Input the password for the privileged account:
 Privileged account access verified.

 The first set of prompts asks for the credentials of a privileged MySQL user that can create new
databases. The default privileged user is ‘root’ but if this was changed during MySQL setup you
may specify the correct info here. The next prompt asks for information about a non-privileged
user as shown below:

- Input a MySQL username the Policy Service will use to
connect to the databases.

9

 -- This name and password must match the
hibernate.connection.username and password specified in
oscars.properties.
 Leave blank for "oscars":
 Using oscars .
- Input the password for the Policy Service account:
 Policy Service account access verified.

Enter the username and password of the MySQL account that the Policy Service will use to
connect to the database. If you are installing on the same machine as the OSCARS IDC and/or
NotificationBroker then you MUST use the password specified in oscars.properties. After
entering these values you are ready to build the database:

- Got all information. Press return to create the
databases...
 Creating databases oscars_policy
 Initializing databases...
 Databases initialized...
 Granting privileges to Policy Service account...
 Policy Service account authorized.

Output such as that shown above indicates success. If you get an error then you should verify
that the username and password provided are correct. After building the database the next step is
to compile the Policy Service software:

- Press return to build Policy Service...

--- Cleaning before compile...
Buildfile: build.xml

clean:

BUILD SUCCESSFUL
Total time: 1 second

--- Compiling...
Buildfile: build.xml

...

BUILD SUCCESSFUL
Total time: 10 seconds

--- Policy Service built.

10

###
#####################

Policy Service built. Please run do_install.sh to
complete this installation.

###
#####################

Some of the output has been omitted from this document but a message such as that above
indicates success. The next step is to run the do_install.sh script that installs the policy service on
your file system. The policy service will be installed in one of two locations depending on your
system configuration:

1. If the OSCARS_HOME environment variable is NOT set then it will be installed in the
current directory (dcn-software-suite-0.5.X/policy).

2. If the OSCARS_HOME environment variable is set then the policy service will be
installed in OSCARS_HOME. You should run the policy service from OSCARS_HOME
if this is the case. This has the added advantage that a machine running other OSCARS
services can start and stop the policy service with the oscars.sh script.

The output of this step is shown below:

% ./do_install.sh
Buildfile: build.xml

...

BUILD SUCCESSFUL
Total time: 3 seconds
Buildfile: build.xml

...

BUILD SUCCESSFUL
Total time: 2 seconds

###
#####################

Policy Service installed.

###
#####################

11

If you see the output above then congratulations! You have successful installed the policy
service.

3.2 Starting the Policy Service

The policy service consists of two important processes: Tomcat used to accept incoming requests
and the Policy core that processes those requests. You may start Tomcat with the following
command:

% $CATALINA_HOME/bin/startup.sh

After starting Tomcat you may start the policy core (NOTE: You may also start the core first as
the order of startup is not significant). If you have NOT set the OSCARS_HOME
environment variable then run the following commands to start (or restart) the policy core in
daemon mode:

% cd dcn-software-suite-0.5.X/policy
% ./policy-core.sh –d
Policy core started.

If you have set the OSCARS_HOME environment variable then run the following commands
to start (or restart) the policy core in daemon mode:

% $OSCARS_HOME/policy-core.sh -d
Policy core started.

NOTE: If OSCARS_HOME is set then all future calls to $OSCARS_HOME/oscars.sh will
restart the policy service in addition to the other OSCARS services.

At this point you are ready to proceed with defining your first policy as described in section 4
Defining Policy.

3.3 Stopping the Policy Service

You may stop and start Tomcat and the core independently. If you need to stop Tomcat then run
the following command:

% $CATALINA_HOME/bin/shutdown.sh

If you have NOT set the OSCARS_HOME environment variable then you may run the
following command to stop the core:

% ./policy-core.sh stop

12

If you have set the OSCARS_HOME environment variable then you may run the following
command to stop the core:

% $OSCARS_HOME/policy-core.sh stop

3.4 Configuring the OSCARS IDC to use the Policy Service

If you are running version 0.5.X of the OSCARS IDC then you can configure it to use the Policy
Service for incoming createReservation and modifyReservation requests. This allows the IDC to
enforce policy based on the decision that the Policy Service returns. Configuration requires you
to login into the IDC machine, open oscars.properties in a text editor, and add the
following lines:

policy.useService=1
policy.service.url=https://policy-service-
address:8443/axis2/services/OSCARSPolicy
default.domain=mydomain.net

The policy.service.url property should be set to the URL of your policy service. If it is running
on the same physical host as the IDC and running HTTPS of port 8443 (the default for Tomcat)
then it would look like the following: https://127.0.0.1:8443/axis2/services/OSCARSPolicy.
Also, the default.domain property should be set to the local domain’s topology identifier. It tells
the policy service the home domain of local users. After setting these properties you need to
restart your IDC with the oscars.sh script.

4 Defining Policy
The OSCARS Policy Service currently allows policy to be defined in a configuration file. This
section describes the format of a configuration file and how to load its contents into the policy
service.

4.1 Policy Configuration File

Policy configuration files define classes of users and the rules that apply to members of those
classes. Below is a sample configuration file taken from dcn-software-suite-
0.5.X/policy/conf/example-policies/simple.conf:

#DENY all requests that don't belong to a policy class
policy-class default{
 rule-set default deny;
}

policy-class simpleClass{
 members{

https://127.0.0.1:8443/axis2/services/OSCARSPolicy

13

 name "CN=Alice, OU=OASIS Interop Test Cert,
O=OASIS";
 name "bob@mydomain.net";
 role "OSCARS-user"
 }
 rule-set simpleRules allow;
}

rule-set simpleRules{
 match-all{
 match-any{
 action == createReservation;
 action == modifyReservation;
 }
 bandwidth < 500;
 }
}

The configuration above defines two policy classes: the default class and one named
simpleClass. The default class is a special class that matches any user that does not belong to
another class. In our example the default class denies any request. The class named simpleClass
matches users alice, bob, or those with the OSCARS-user role attribute. Requests from members
of this class are only allowed if they match the rules defined in simpleRules. The rules defined
state that a request must be for a createReservation or modifyReservation action and that the
bandwidth of the affected reservation must be less than 500Mbps. This configuration file will be
explored in greater detail in the remainder of this section.

4.2 Policy Classes

A policy class defines a group of users and the rules that should be applied to them. A policy
class is defined with the syntax policy-class name{…} where name is a value that
identifies the class. In the section 4.1 example we defined a policy class named simpleClass as
follows:

policy-class simpleClass{
 ...
}

The name may be any valid string with the exception of a special reserved name: default. The
default class is a special class that matches any policy request about a user that does not belong
to another class. Since the default class is a “catch-all” we don’t have to define the members of
the class. For all other classes we do need to define the members. This is specified by including a
members block inside a policy-class definition. In simpleClass we defined the following:

members{

14

 name "CN=Alice, OU=OASIS Interop Test Cert, O=OASIS";
 name "bob@mydomain.net";
 role "OSCARS-user"
}

Each line in the block specifies a name or attribute of a user. If a particular user matches ANY of
the criteria then the policy for the class will be applied. Currently only the following attributes
are allowed:

1. name – Either the X.509 subject or OSCARS login of a user. If the user account is
managed by a local OSCARS AA service then the policy service will be capable of
looking up either the X.509 subject or the login. This means you only have to specify one
of these values and if either is used it will match to the particular class. If a user account
lives in a remote domain it is recommended you use the X.509 subject as that is how user
identifications are currently passed between domains by default. If the user in the remote
domain does not have an X.509 certificate you may use the form login@home-domain.
Also, you must always qualify local users with the local domain (i.e.
login@mydomain.net) when using the OSCARS login so it is clear who is being
referenced.

2. role – This matches the role attribute of a user as defined in the local OSCARS AA
service. Common examples include “OSCARS-user”, “OSCARS-engineer”, and
“OSCARS-service”.

In our example there are three ways a user may be a member of simpleClass: by holding the
X.509 certificate with the subject "CN=Alice, OU=OASIS Interop Test Cert, O=OASIS", being
the owner of the OSCARS login “bob”, or having the “OSCARS-user” role attribute. It should
also be noted that a user might belong to multiple policy-classes. For example, if we defined a
policy class named simpleClass2 that include all users with the “OSCARS-engineer” role and
user “bob” has that role then “bob” belongs to both simpleClass and simpleClass2. In such a case
“bob” must meet all the policy constraints of BOTH simpleClass and simpleClass2. We associate
policy constraints with a policy class through rule sets. A policy class references which rule-set
to use with the rule-set directive inside the policy class. The rule-set directive takes the form
rule-set setName allow|deny. The setName indicates the name of the rule-set to use.
The rule-set is defined elsewhere in the configuration file as described in section 4.3. The last
part of the directive is either allow or deny and indicates whether a request that matches all the
rules should result in a decision to allow or deny the action. Below is the example from section
4.1 for simpleClass:

rule-set simpleRules allow;

The example defines that any request that matches the rules in the rule-set with name
simpleRules should be allowed. Alternatively, if we were to specify deny instead of allow then

15

any request that matched the rules in simpleRules would be denied. It should also be noted that
there is a special rule-set named default which points to an empty set of rules. That means that
any request that matches a policy class using the default rule-set will always be allowed or
denied depending on whether allow or deny is specified. A common practice is to use the default
rule-set with the default policy-class to allow or deny all requests that don’t belong to a class. In
our previous example the default class denied all requests with the following:

rule-set default deny;

Those are the basics of defining policy classes in a configuration file. In addition to the features
mentioned in this section, policy classes can also be arranged in hierarchies, but that topic is
beyond the scope of this section. See section 6.1 for more information on defining policy
hierarchies. Proceed to the next section to learn the basics of defining rule sets that apply to
policy classes.

4.3 Rule Sets

A rule set defines a list of constraints on a particular resource. A rule set is defined with the
syntax rule-set setName{ … } where setName identifies the set. The setName also
corresponds to the setName referenced by the rule-set directive in the policy class definition (see
section 4.2). Using the example from section 4.1,a rule set named simpleRules is defined as
follows:

rule-set simpleRules{
 ...
}

A rule set contains one of the following blocks at its root:

1. match-all – All the rules in this block must be matched

2. match-any – any of the rules in this block must be matched

You may nest match-all and match-any blocks to any depth to build your policies. Eventually,
though, you will need to define some rules about resources inside of those blocks. Rules take the
following form:

field operator value;

In the example field is the name of the field to evaluate, operator indicates the operation to
perform when evaluating the field (i.e. equals, not equals, etc), and value is the value that the
field should be evaluated against. Below is the example from sections 4.1:

match-all{
 match-any{
 action == createReservation;

16

 action == modifyReservation;
 }
 bandwidth < 500;
}

In the example there is a match-all block that has two direct descendents. One is a match-
any block that indicates the action field must be equal to createReservation or
modifyReservation. The other descendent indicates that the bandwidth field must be less than
500Mbps. The OSCARS Policy Service provides a number of fields and operators by default.
Fields can be of the following types: strings, numbers, dates or booleans. Depending on the type
you have different operators available. The default set of fields should meet most needs related to
dynamic circuit provisioning but section 6.2 details how to define custom fields if the default set
is not adequate. Below is a description of the various rule types and the operators available.

4.3.1 Strings

String fields are those that can be evaluated as text. They have the following operators available:

Operator Description

== Evaluates to true if the value of a field equals the value specified in the rule

!= Evaluates to true if the value of a field does NOT equal the value specified in
the rule

startsWith Evaluates to true if the field starts with the substring specified by the rule
value.

endsWith Evaluates to true if the field ends with the substring specified by the rule
value.

contains Evaluates to true if the field contains the substring specified by the rule value.

The following string fields are available by default:

Field Description

action Matches the action to be performed on the
resource. By default the only valid values are

17

createReservation or modifyReservation.

description Matches the user-specified description of a
reservation.

destination Matches the URN of the last link in the inter-
domain path.

dscp MPLS-only field. Matches the dscp field.

egress Matches the URN of the last link in the local
path.

gri Matches the global reservation ID (GRI) of a
reservation

ingress Matches the URN of the first link in the local
path.

inter-hop-all Looks at all hops in the inter-domain path and
evaluates to true if all elements match the
expression.

inter-hop-any Looks at all hops in the inter-domain path and
evaluates to true if one or more elements match
the expression.

inter-hop-N Replace N with a number. Evaluates to true if
the hop at position N in the inter-domain path
matches the expression.

l4-destination MPLS-only field. Matches the destination
address used to categorize the LSP.

l4-protocol MPLS-only field. Matches the protocol field.
Valid values are “tcp” or “udp”.

l4-source MPLS-only field. Matches the source address

18

used to categorize the LSP.

local-hop-all Looks at all hops in the local path and
evaluates to true if all elements match the
expression.

local-hop-any Looks at all hops in the local path and
evaluates to true if one or more elements match
the expression.

local-hop-N Replace N with a number. Evaluates to true if
the hop at position N in the local path matches
the expression.

path-setup-mode Matches the method of path setup for a
reservation. Valid values are “timer-
automatic” or “signal-xml”.

source Matches the URN of the first link in the inter-
domain path.

4.3.2 Numbers

Number fields are those that can be evaluated as a numeric value (i.e. 2, 3.55) or range (i.e. “100-
200,300-400”). The operators for numeric values are as follows:

Operator Description

== Evaluates to true if the value of a field equals the value specified in the rule

!= Evaluates to true if the value of a field does NOT equal the value specified in
the rule

> Evaluates to true if the field is greater than the value specified in the rule. If a
range then all values in the range must be greater than the specified value.

19

>= Evaluates to true if the field is greater than or equals the value specified in the
rule. If a range then all values in the range must be greater than or equal to the
specified value.

< Evaluates to true if the field is less than the value specified in the rule. If a
range then all values in the range must be less than the specified value.

<= Evaluates to true if the field is less than or equals the value specified in the
rule. If a range then all values in the range must be less than or equal to the
specified value.

The default fields are as follows:

Field Description

bandwidth Matches the bandwidth of a reservation in
Mbps.

burst-limit MPLS-only. Matches the burst limit of a
reservation.

dest-vlan Matches the last VLAN or VLAN range in the
inter-domain path

duration Matches the length of time a reservation may
be ACTIVE in seconds (i.e. end-time minus
start-time)

egress-vlan Matches the last VLAN or VLAN range in the
local path

ingress-vlan Matches the first VLAN or VLAN range in the
local path

inter-vlan-all Looks at all VLANs in the inter-domain path
and evaluates to true if all elements match the
expression.

20

inter-vlan-any Looks at all VLANs in the inter-domain path
and evaluates to true if one or more elements
match the expression.

inter-vlan-N Replace N with a number. Evaluates to true if
the VLAN at position N in the inter-domain
path matches the expression.

l4-dest-port MPLS-only. Matches the destination layer 4
port used to assign packets to an LSP.

l4-source-port MPLS-only. Matches the source layer 4 port
used to assign packets to an LSP.

local-vlan-all Looks at all VLANs in the local path and
evaluates to true if all elements match the
expression.

local-vlan-any Looks at all VLANs in the local path and
evaluates to true if one or more elements match
the expression.

local-vlan-N Replace N with a number. Evaluates to true if
the VLAN at position N in the local path
matches the expression.

lsp-class MPLS-only. Matches the LSP class of a
reservation.

source-vlan Matches the first VLAN or VLAN range in the
inter-domain path

4.3.3 Dates

Date fields are those that can be evaluated as UNIX timestamps (in seconds). You can specify
relative or absolute dates for your comparisons. Also, absolute dates support wildcards that allow
you to specify rules that only occur at a particular time of day, month, year, etc. The notation for
each date type is below:

21

 Relative dates- Relative dates are wrapped in quotes and start with a + or – sign that
indicates whether the time should be added or subtracted to the current time. Immediately
following the sign is a value indicating the amount of time to increase/decrease relative to
the current time. A space and then a string indicating the units follow this. Valid units are
seconds, minutes, hours, days, weeks, months or years. Examples are below:

 “+2 hours” (2 hours in the future)

 “-30 seconds” (30 seconds in the past)

 “+1 days” (1 day in the future)

 Absolute dates – Absolute dates explicitly indicate a date and/or time of day in GMT.
They take the format “YYYY-MM-DD HH:MM:SS”. Alternatively you can replace any
part of the date with a wildcard (‘*’) to indicate any value matches. Below are some
examples:

 “2010-01-01 00:00:00” (January 1, 2010 at midnight GMT)

 “2010-01-01 *:*:*” (January 1, 2010 at any time of day GMT)

 2010-01-* 10:*:*” (Any day in January 2010 between 10:00:00 and 10:59:59
GMT)

Below are operators that can look at dates. Each operator accepts both relative and absolute
values as right operands:

Operator Description

== Evaluates to true if the value of a field containing a timestamp equals the date
specified in the rule.

!= Evaluates to true if the value of a field containing a timestamp does NOT
equal the date specified in the rule

> Evaluates to true if the field containing a timestamp is greater than the date
specified in the rule.

>= Evaluates to true if the field containing a timestamp is greater than or equal to
the date specified in the rule.

< Evaluates to true if the field containing a timestamp is less than the date

22

specified in the rule.

<= Evaluates to true if the field containing a timestamp is less than or equal to the
date specified in the rule.

The default fields are as follows:

Field Description

current-time A special field that evaluates to the current
time when the rule is being evaluated.
Equivalent to the time a createReservation
request is made.

end-time Matches the end time of the reservation.

start-time Matches the start time of the reservation.

Using the operators and default fields a few more examples are provided below:

 start-time < “+2 weeks” (true if reservation start time is less than 2 weeks in the future)

 current-time >= 2010-01-01 00:00:00” (true if time at which the rule is evaluated is on or
after January 1, 2010 at midnight GMT)

 end-time < “*-*-* 12:00:00” (true if reservation ends any day before noon GMT)

 end-time < “*-*-01 12:00:00” (true if reservation ends on the 1st day of any month before
noon GMT)

4.3.4 Booleans

A Boolean field is one that evaluates to true (1) or false (0). Currently there are no Boolean fields
defined by default. A Boolean field may be defined by creating a custom field as described in
section 6.2. The operators available for Boolean fields are as follows:

Operator Description

== Evaluates to true the value of a field equals the value specified in the rule.
Valid values are 0 or 1.

23

!= Evaluates to true the value of a field does NOT equal the value specified in
the rule. Valid values are 0 or 1.

4.4 Loading a Policy Configuration File

After defining your policy you need to load it into the policy database with the policy-
config command. The format of the command is policy-config filename. Below is
an example the commands required to run policy-config:

% cd dcn-software-suite-0.5.X/policy/
% tools/utils/policy-config conf/example-
policies/simple.conf
Policy configuration loaded.

It should be noted that in addition to inserting new policies the script will also remove any old
policies no longer in the policy configuration file. After this step is complete you have loaded
your policy!

5 Logging
If problems occur with your policy service the best place to look is the logs. The logs exist in
default locations that you can also modify. Below is a description of where logs are kept and how
to change logging behavior.

5.1 Default Logs

Below is a table of relevant logs in the OSCARS Policy Service:

Location Description

$OSCARS_HOME/logs/oscars-
policy.log

Contains information related to activity inside
the policy engine.

$CATALINA_HOME/logs/catalina.out Contains information related to Tomcat and
web service messaging.

$OSCARS_HOME/logs/oscars-policy-
client.log

Contains information related to the policy-
config script.

24

5.2 Changing Log Behavior

Modifying properties files can change the location of logs and amount of logging. The OSCARS
Policy service uses Log4J to handle logging so please see [3] for more details. The locations of
relevant Log4J properties files are below:

Location Description

$OSCARS_HOME/conf/logging/
policy-core.log4j.properties

Logging related to the Policy Service core.

$CATALINA_HOME/logs/Catalina.out Tomcat logging related to message processing.

$OSCARS_HOME/conf/logging/
policy-client.log4j.properties

Logging related to the policy-config
script

6 Advanced Topics
This section contains advanced topics for those administrators comfortable with the OSCARS
Policy Service wishing to know more.

6.1 Policy Class Hierarchies

Policy classes can be arranged in a hierarchical fashion to reduce redundancy in defining policy.
When defining a policy class an optional parent policy class can be defined. When a policy class
has a parent that means that all the rules that apply to the parent and its ancestors must match in
addition to those that are defined just for the child. A policy class may only have one parent.
Parents are defined using the parent parentName directive inside a policy class block
(parentName is the name of the parent class). Below is an example of a policy class hierarchy
defintion:

policy-class root{
 members{
 user “administrator1”;
 }
 rule-set rules1 allow;
}

25

policy-class leaf1{
 members{
 user “site1”;
 }
 parent root;
 rule-set “rules2_1” allow;
}

policy-class leaf2{
 members{
 user “site2”;
 }
 parent root;
 rule-set “rules2_2” allow;
}

policy-class leaf1_1{
 members{
 user “user1”;
 }
 parent leaf1;
 rule-set “rules3_1” allow;
}

policy-class leaf1_2{
 members{
 user “user2”;
 }
 parent leaf1;
 rule-set “rules3_2” allow;
}

The policy above creates a class hierarchy that looks like the following:

26

In the example a request by user “site1” would have to adhere to the rules for both the root
policy class and the leaf1 policy class. Likewise “user2” would have to adhere to the rules for the
root, leaf1, and leaf1_2 policy classes. This saves the manager of the policy service the trouble of
redefining rules of root and leaf1 while adding a few new ones to leaf1_2 that don’t apply to
upper layers. It also means that as rule changes occur at the upper layers they propagate down
into the lower level of the hierarchy automatically.

6.2 Defining Custom Rule Fields

You may define custom rule fields by editing the fields.properties file. This may be valuable if
you’d like to extend the policy service to support resources other than circuit reservations. The
location of fields.properties depends on your installation. If you have the OSCARS_HOME
environment variable set, then it will be under $OSCARS_HOME/conf/properties. If you do not
have OSCARS_HOME set, then it will be under $CATALINA_HOME/shared/classes/server. If
you open the file in a text editor you will see a number of properties already defined. Below is a
snippet from the file that is installed by default:

field.string.gri=/idc:reservationResource/idc:globalReser
vationId
field.number.start-
time=/idc:reservationResource/idc:startTime

As the example above shows the basic format is field.type.name=xpath. The type may
be string, number, date, or boolean. The name of the field indicates how the field will be
specified in the policy configuration file. The xpath indicates an XPath expression that points to
the XML field in a resource to which the name maps. If the XML field contains text it should be
of type string; if it evaluates to a numeric value it should be of type number; if it evaluates to a
timestamp(in seconds) it should be a date; and if it evaluates to a boolean then it should be

27

boolean. See reference [1] for information on the structure of resources and [2] for information
on XPath.

There are also some special types of field that you can define pertaining to lists of elements. One
type indicates that you would like to match a particular element at position N in a list. This can
be defined by appending ‘-#N#’ to the end of the field name. For example inter-vlan-#N# can be
written as inter-vlan-5 in a policy configuration file to match the fifth VLAN in a list. If no field
is found at the position then it evaluates to false. In addition you can say that you want a field to
match any single element in a list regardless of position. This can be done by appending ‘-any’ to
the end of the field name. For example, inter-vlan-any corresponds to any VLAN in the inter-
domain path. Rounding out the special list fields you may specify that a field correspond to every
element in a list by appending ‘-all’ to the field name. For example inter-vlan-all corresponds to
all VLANs in the inter-domain path.

You may also define new actions. Since actions map to URNs but URNs are not very user-
friendly, field.properties maps shorter names to the action types. The format is
action.name=urn where name is the short-hand version to be used in the policy
configuration file and urn is the actual URN.

There is also a special variable you can assign to field: #current_time#. It produces a timestamp
of the current time when the rule is evaluated and should be used as a date or number type. By
default the “current-time” field has this value but you can change the name of the field or create
an alias with this variable.

Finally, you may also define new namespaces for XPath with a property such as
namespace.prefix=uri where prefix is the prefix to use and uri is the namespace URI.

7 Further Reading
[1] OSCARS Policy Interface <
https://wiki.internet2.edu/confluence/display/DCNSS/OSCARS+Policy+Interface>

[2] XML Path Language (XPATH) <http://www.w3.org/TR/xpath>

[3] Apache Log4J <http://logging.apache.org/log4j/1.2/>

http://logging.apache.org/log4j/1.2/
http://www.w3.org/TR/xpath
https://wiki.internet2.edu/confluence/display/DCNSS/OSCARS+Policy+Interface

	1Overview
	1.1About this Document
	1.2Hardware and Software Requirements
	1.2.1System Requirements
	1.2.2Firewall Requirements
	1.2.3Third-Party Library and Package Requirements

	1.3Downloading the Policy Service software

	2Preparing your Environment
	2.1MySQL
	2.1.1Install Option 1: Manual Installation
	2.1.2Install Option 2: Automatic Installation with a Package Manager

	2.2Java Development Kit (JDK)
	2.2.1Do I already have the right version of Java?
	2.2.2Download and Installation
	2.2.3Setting the JAVA_HOME Environment Variable
	2.2.4Optional: Adding JAVA_HOME/bin To Your PATH Variable

	2.3Tomcat
	2.3.1Download and Installation
	2.3.2Setting the CATALINA_HOME Environment Variable
	2.3.3Starting/Stopping the Tomcat Server
	2.3.4Verifying a Successful Installation
	2.3.5Configuring SSL

	2.4Ant
	2.4.1Download and Installation
	2.4.2Setting the ANT_HOME Environment Variable
	2.4.3Adding ANT_HOME/bin to Your PATH Variable

	3Installing the Policy Service Software
	3.1Installing the Policy Service
	3.2Starting the Policy Service
	3.3Stopping the Policy Service
	3.4Configuring the OSCARS IDC to use the Policy Service

	4Defining Policy
	4.1Policy Configuration File
	4.2Policy Classes
	4.3Rule Sets
	4.3.1Strings
	4.3.2Numbers
	4.3.3Dates
	4.3.4Booleans

	4.4Loading a Policy Configuration File

	5Logging
	5.1Default Logs
	5.2Changing Log Behavior

	6Advanced Topics
	6.1Policy Class Hierarchies
	6.2Defining Custom Rule Fields

	7Further Reading

