

One-Way Ping (OWAMP): An Internet2
Cookbook

Disclosure/Disclaimer

This material is based in part on work supported by the National Science Foundation
(NSF) under Grant No. ANI-0314723. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the NSF.

This document was developed to be used in conjunction with an Internet2 Network
Performance Workshop; for more information on these workshops (upcoming and past),
see: http://e2epi.internet2.edu/network-perf-wk/.

http://e2epi.internet2.edu/network-perf-wk/

One-Way Ping (OWAMP) is heavily used in the E2E piPEs project and the Abilene
Measurement Infrastructure. More information on this tool can be found at
http://e2epi.internet2.edu/owamp/.

This cookbook has two parts: an Overview of the tool, with examples of its usefulness,
and an Installation Guide, that walks you through setting up One-Way Ping (owampd)
servers at your location.

An Overview of OWAMP

What Is It?
OWAMP is a sample implementation of the One-Way Active Measurement Protocol
(OWAMP) being developed by the Internet Engineering Task Force’s (IETF’s) IPPM
Working Group for latency and delay measurements. (Following the fine tradition of
FTP, the application has been named after the protocol.) Information on the version of the
protocol that OWAMP, the application, currently implements can be found at:
http://www.ietf.org/internet-drafts/draft-ietr-ippm-owdp-014.txt.

Motivation
The main motivation for developing OWAMP was to find problems in the network:

• Congestion usually happens in one direction first…
• Routing (asymmetric, or just changes)
• SNMP polling intervals mask high queue levels that active probes can show

There have been many implementations of One-Way delay over the years (Surveyor,
Ripe, etc.). The largest barrier to adoption has been interoperability of these
implementations. The solution to these kinds of problems is to develop implementations
that conform to accepted standards. This effort is our attempt to do that.

Methodology
OWAMP relies on the fact that time sources are much easier to come by than they once
were. This makes it possible for one-way latency measurements to be collected across a
broad mesh of network paths. Additionally, the open source nature of this implementation
makes it possible for one-way metrics to become as common as round-trip metrics (from
tools like ping).

Congestion typically only happens in one direction of a given network path. One-way
metrics are the most straightforward way to isolate these effects. Active measurements
such as one-way latency measurements from end-to-end are arguably one of the best
ways to determine if a given application will work because the diagnostic tool is basically
performing as close to the same actions as the real application.

http://e2epi.internet2.edu/owamp/
http://e2epi.internet2.edu/owamp/

Control Protocol
The client makes requests for tests with a server. The protocol has:

• Support for authentication and authorization
• Ability to configure tests
• Receiver end-point controlled port numbers
• Extremely configurable send schedule
• Configurable packet sizes
• Ability to start/stop tests
• Ability to retrieve results
• Provisions for dealing with partial session results

Test Protocol
Packets can be open, authenticated, or encrypted. The protocol is effectively a packet
format.

Sample Implementation
The OWAMP applications are:

• owampd daemon
• owping client

Functions and Features
There are different functions and features for the client and daemon.

Client (owping)
The command line arguments were made as similar to ping as possible.

• owping client requests OWD tests from an OWAMP server
• Client can be sender or receiver
• Communication can be “open”, “authenticated”, or “encrypted”
• Supports the setup of many tests concurrently
• Supports the buffering of results on the server for later retrieval

Daemon (owampd)
owampd is a standard accept/fork style Unix daemon:

• Accepts requests for OWD tests
• Responds with accepted/denied
• Tests are formally started with a StartSessions message from the client.
• Runs tests
• Sessions with packets received at the server are buffered for later retrieval

Resource Allocation
The parent owampd keeps track of current resource utilization needed to implement
policy. Each connection is ‘classified’ (authentication) and each classification is
associated with a set of hierarchical limits that are used to make policy decisions
(authorization):

• Bandwidth (bandwidth)
• Session buffer (disk)
• Data retention (delete_on_fetch)
• Connection policy (allow_open_mode)

There is no time-dependent dimension to resource allocation in owampd. It currently
treats all allocations as immediate but, since it has a complete schedule as part of the
request, there is no reason this could not be added in the future.

Architecture

Figure 1: Control Flow

Overview
OWAMP is a typical client-server application. The owping client contacts the owampd
daemon on the peer host to request a specific test. The request includes an indication of
the complete send schedule as well as parameters to indicate packet characteristics.
owampd is responsible for accepting or denying the request.

owampd has been developed as a classic accept/fork daemon. The master daemon
process listens for new network connections and also manages the resources for all child
owampd processes. When a connection comes in, owampd forks a child process to handle
the requests from that connection.

The child process handles all encryption and communication issues with the client, as
well as all static resource limits. Static resource limits are those not dependent upon what
is currently happening on the node. For example, the request broker can easily determine
if the given client is allowed to do open mode (unauthenticated) tests without talking to
the master daemon.

Once the request broker process determines the request is valid, it makes a request to the
master daemon for the resources and time period requested by the client. If the master
daemon has the resources available it grants the request.

Once a given test session is accepted, the client and server both fork off One-Way Delay
(OWD) Test Endpoint children to run that test. A single control connection can spawn off
any number of test sessions. However, once pending test sessions are started by the start
session message all sessions must be completed before more sessions can be requested
using the same control connection. Additionally, the test sessions need to be completed
before data can be retrieved using the same control connection. Of course, a client could
open another control connection to the peer to start additional sessions, or to request
intermediate results from any of the active sessions.

Test Endpoints
The OWD Test Endpoint processes are implemented using identical code on both the
server and the client. The OWD Test Endpoint processes send and receive packets
according to the agreed upon schedule. OWD Test Endpoint processes exit and returns
the exit status of the test to the Control parent process when the test sessions are
complete. Test sessions are declared complete by both sides of the test a specified
timeout period after the last packet is sent. The client can then fetch the results for the
send test sessions that are buffered by the server. (The client will already have the results
for receive sessions since the client receives those packets.) The server can be configured
to delete the buffered data when the data is fetched the first time, or it can be buffered
indefinitely and cleaned by an external process.

General Requirements
Getting a good stable NTP configuration is the most challenging task for obtaining good
owamp results. You need:

• NTP (ntpd) synchronized clock on the local system
• Specific configuration requirements as specified in the NTP cookbook

Operational Concerns
Concerns include time and firewalls; time issues include:

• NTP issues predominate the problems
• Determining an accurate timestamp “error” is in many ways more difficult than

getting a “very good” timestamp
• Working as an “open” server requires UTC time source (For predefined test peers,

other options available)

Firewall issues include:

• TCP ports need to be opened for control communication
• UDP ports need to be opened for test traffic

There is a trade-off decision that needs to be made here. System administrators like to
have a single port-range defined for applications so the traffic generated by those
applications can be classified. However, using a well-known predefined port range would
also allow network hardware vendors to also classify the test traffic. This would allow
vendors to prioritize test traffic to make their hardware look better. Therefore, because
using a single predefined port range would be problematic, owampd allows the installer
to define a specific port range for test sessions that are received on the host as a
compromise position.

Policy Issues
The policy issues can best be grouped into two categories. First, it is important to ensure
that an owampd server is a good network citizen, that it does not use more local host and
network resources than it should, and the integrity of the owampd server and the data
produced is protected (see Security Considerations, below). And second, controls need to
be in place to allow the available resources to be partitioned among the valid users of the
server (see Resource Consumption, below).

Security Considerations
You need to be concerned about not becoming a 3rd-party Denial of Service (DoS) source
or a DoS target; other areas to take into consideration are resource consumption, memory
(primary and secondary), and network bandwidth.

DoS Source
A compromised owampd server could be used to send packets toward others. The
implementation ensures that sessions cannot be directed to random hosts in
unauthenticated mode. (Only toward the OWAMP-control client.) Reasonable bandwidth
limits and well protected AES keys should limit this risk.

DoS Target
Packets directed toward an owampd server can/will affect the precision of the valid test
traffic. Someone might try to affect data plots by targeting hosts that do one-way
measurements.

Resource Consumption
owampd has policy controls to allocate resources to appropriate users. This is done by
classifying each new incoming request either by IP/netmask or using a known AES key.
Each classification is associated with a set of resource limits.

Policy Recommendations
On Abilene, we attempt to be open until we can’t. We recommend that new users restrict
overall bandwidth to something relatively small (most OWAMP sessions do not require
much) and limit “open” tests to ensure they do not interfere with precision of other tests.

Methodological Errors
Our tests indicate a methodological error of 73 usec for the following hardware:

• Intel SCB2 motherboard
• 2x512 MB ECC registered RAM
• Intel PRO/100+ integrated NIC

This error was determined using:

• Two systems connected via cross-over cable
• Two concurrent sessions between the systems (send, recv)
• 10 packets/second
• 95% confidence level (RFC 2679)
• Old version of OWAMP; the tool should be even better now.

Error is specific to this hardware and intensity level. Basically, you should expect your
results to be valid within 100 usec’s of the error reported. (The error reported represents
the NTP error, but does not include this error.)

Availability
The tool, as well as the source code, is available at:
http://e2epi.internet2.edu/owamp/download.html.

Email-based discussion lists are available; go to the http://e2epi.internet2.edu/owamp/
web site and click:

• owamp-users – General discussion on the OWAMP tool
• owamp-announce – Announcements on new features/releases

Publicly-Accessible Servers
Below is a list of publicly-accessible servers. Note that this is not a complete list and
more are being added when they become available. (A more up-to-date list can be
derived by looking at http://e2epi.internet2.edu/pipes/pmp/pmp-dir.html.) Several
institutions also run private servers.

http://e2epi.internet2.edu/owamp/download.html
http://e2epi.internet2.edu/owamp/
http://e2epi.internet2.edu/pipes/pmp/pmp-dir.html

Institution / Network Location Information Page
APAN Japan APAN PMP Info
DANTE/GEANT Europe GEANT PMP Info
ESnet US Nationwide ESnet PMP Info
Hawai'i GigaPoP/University of Hawai'i Honolulu, HA Hawai'i PMP Info
Internet2 / Abilene US Nationwide Abilene PMP Info
KISTI/KREONet2 Korea KISTI PMP Info
MIT / Haystack Observatory Westford, MA Haystack PMP Info
NC-ITEC Raleigh, NC NC-ITEC PMP Info
NOAA Boulder Laboratories Boulder, CO NOAA PMP Info
NORDUnet Sweden NORDUnet PMP Info
Ohio State University Columbus, OH OSU PMP Info
RNP Measurement WG/RNP2 Brazil RNP PMP Info
Southern Crossroads GigaPoP (SoX) Atlanta, GA SoX PMP Info
Swedish University Network Sweden Sunet PMP Info
Swiss Education and Research Network Switzerland SWITCH PMP Info
TWAREN Hsinchu, Taiwan TWAREN PMP Info

Figure 2: Publicly-Accessible owampd Servers

Internet2 E2E piPEs Project
The focus of this effort is to develop an end-to-end measurement infrastructure capable of
finding network problems. The tools used by this project include the Bandwidth Test
Controller (BWCTL – manages throughput tests), OWAMP (one-way latency), and NDT
(last mile issues). Each of these tools has a cookbook similar to this one. They can all be
accessed through http://e2epi.internet2.edu/library-list.html.

http://www.jp.apan.net/NOC/bwctl/pmp.html
http://www.dante.net/server/show/conWebDoc.1050
https://performance.es.net/PMP.html
http://thundarr.its.hawaii.edu/GigaPOP/e2epipes/pmp-hawaii.htm
http://e2epi.internet2.edu/pipes/pmp/pmp-abilene.html
http://e2epi.internet2.edu/pipes/pmp/PMP-kisti.htm
http://e2epi.internet2.edu/pipes/pmp/haystack.html
http://e2epi.internet2.edu/pipes/pmp/PMP-NC-ITEC.htm
http://hpcs.fsl.noaa.gov/pmp-noaafsl.html
http://www.nordu.net/measurement/bwctl/servers.html
http://e2epi.internet2.edu/pipes/pmp/pmp-osu.html
http://www.nuperc.unifacs.br/observatorio/pmp.html
http://bwctl.sox.gatech.edu/bwctl.html
http://proj.sunet.se/bwctl/pmp-sunet.html
http://e2epi.internet2.edu/pipes/pmp/pmp-switch.htm
http://e2epi.internet2.edu/pipes/pmp/pmp-twaren.htm
http://e2epi.internet2.edu/library-list.html

Installation Guide: Establishing an owampd Server
This section contains information on installation and configuration. More information on
the tool can be found at: http://e2epi.internet2.edu/owamp/.

Components
Everything is contained in a single downloadable tar file. The file is stored on the
Internet2 web site at: http://e2epi.internet2.edu/owamp/download.html.

Supported Systems
• FreeBSD 4.x, 5.x, 6.0 (64-bit)
• Linux 2.4, 2.6 (64-bit)
• Solaris 10.x
• MacOS X 10.4.5
• (Most recent versions of UNIX should work)

Requirements and Recommendations
This section covers the hardware requirements, software requirements, and recommended
settings.

Hardware Requirements
• Stable System Clock

 Temperature controlled environment
 No power management of CPU

• No strict requirements for CPU, Memory, Bus speed
• More tasking schedules will require more capable hardware

A stable system clock is the most important feature. On Abilene, we use: an Intel SCB2
motherboard in the following configuration:

• 2 x 1.266 GHz PIII, 512 KB L2 cache, 133 MHz FSB
• 2 x 512 MB ECC registered RAM (one/slot to enable interleaving)
• 2 x Seagate 18 GB SCSI (ST318406LC) Inter Ethernet Pro
• 10/100+ (i82555) (on-motherboard)

We use systems configured like this to support a minimum of 44 concurrent streams of
10 packets/second (990 Mbps TCP flows) on a system co-located with each Abilene PoP.
The 44 concurrent streams represent intra-Abilene testing. The Abilene measurement
hosts that are doing tests with hosts on external networks are participating in additional
streams. The specific system requirements are highly dependent upon the specific
network tests. Higher intensity schedules will require more capable hardware. For more
information on the network measurement computers at each Abilene PoP, see
http://abilene.ucaid.edu/observatory/.

http://e2epi.internet2.edu/owamp/
http://e2epi.internet2.edu/owamp/download.html
http://abilene.ucaid.edu/observatory/

Software and System Requirements
One-way latency measurements are only generally meaningful if the clocks on the two
involved systems are synchronized. (some things, like jitter, are meaningful even without
synchronization) OWAMP relies on NTP (ntpd) to synchronize the system clocks needed
to provide the high accuracy timing between systems. The clocks must be stable for
OWAMP to be accurate; therefore NTP must be configured with stability and resilience
in mind. (For more details, see the NTP cookbook at: http://e2epi.internet2.edu/library-
list.html). OWAMP uses NTP-specific system calls, if they are available.

If you are working with firewalls, you will need to open the appropriate ports for
communication and testing:

• TCP/8424 (Control communication)
• UDP/ephemeral (Settable using testports configuration in owampd.conf)

To do this using iptables, the additional arguments would look something like:

-A RH-Firewall-1-INPUT -m state --state NEW -m tcp -p tcp --dport
4824 -j ACCEPT
-A RH-Firewall-1-INPUT -p udp -j ACCEPT

Recommended Settings
On Abilene, we attempt to be as open as we can, until we can’t anymore. We suggest:

• Limit bandwidth
• Limit disk space available for buffering
• Allow modest amount of anonymous testing
• If you use AES keys to allow more intense tests, protect them!

General Security Concerns
As discussed earlier in this manual, the biggest issue for Abilene is: No DoS attacks! The
general approach is: 1) do no harm (we don’t want machines to be a source of DoS
attacks but we would like them to be as available as possible and useful as possible for
debugging) and 2) avoid being an attractive nuisance (obscurity lessens usefulness but do
harden machines themselves).

Regarding hardening machines: don’t run anything you don’t have to. Keep up to date
with security patches. Perhaps run a local firewall (on the machine) if it makes sense.
But see if it affects your measurement results and realize that, by default, OWAMP will
want to use the “ephemeral” UDP ports for testing (to a rough approximation, all those
over 1024, but it varies by OS). Consider restricting logins, and where logins can occur
from. If you’re really good, audit programs on the machine.

OWAMP Security Concerns
These are the resources that are at risk directly from the use of OWAMP (issues the
configuration must solve.)

http://e2epi.internet2.edu/library-list.html
http://e2epi.internet2.edu/library-list.html

• Limit the bandwidth that can be consumed
• Limit the memory/disk that can be consumed on the test host

Building the OWAMP Programs
To unpack, build, and install OWAMP, first grab the latest tarball at
http://e2epi.internet2.edu/owamp/download.html, unpack the tar file, and use the
provided configure script and make to create and install the executables:

% gzip -cd owamp-$VERS.tar.gz | tar xf -
% cd owamp-$VERS
% ./configure --prefix=/ami

--prefix is only needed if you don't like the default
(/usr/local on most systems)

% make
% make install

This does not install configuration files.

Partitioning Resources
To protect resources you must decide how many of those resources you are willing to
have this activity use, and who you want to use it.

• Decide upon complete amount of resources it is acceptable for the test host to
consume

• Decide how to allocate those resources among users
• How much disk space can be dedicated? Per group?
• How much bandwidth total? Per group?
• Keep system load in mind as well as network. The data accuracy will suffer if the

system is too loaded.

Resources Allocated Using Hierarchical Limitclasses
OWAMP allows hierarchical limitclasses to be defined so available resources can be
partitioned in a hierarchical model.

• Users are grouped into hierarchical limitclasses
• One parent-less class allowed, it defines the total amount of resources available
• When limitclasses are defined, limits of the one and only parent are inherited
• When consumable resources are requested, the limits of the limitclass and all

parent limitclasses must be satisfied (memory/bandwidth)

An example of hierarchically organized limitclasses would be:

http://e2epi.internet2.edu/owamp/download.html

Root Complete set of resources

available
NOC Super-user limits
Peer Extended limits for peer NOC

tests
Normal Reasonable limits for end users
Open Conservative limits for anyone
Hostile Used to “jail” hostile users

You will define the hierarchy in a way that makes sense for the particular groups of users
you have. (It is of course possible to define a flat space where all groups are direct
children of the “root” group if your groups of users are completely unrelated.) Another
probable hierarchy would be defined by creating sub-limitclasses from “normal” for users
from other domains.

Classifying Connections
This was kept as simple as possible for now. There is no DNS matching of any kind.
There are two methods used to classify connections.

IP/netmask
• The IP address of the client is matched against a list of IP netmask specified

subnets and assigned to a limitclass based on the address of the client
• The most specific matching mask wins in the matching algorithm

This does not need to be a “real” sub-net from a routing perspective. The netmask here is
only a way of expressing a range of addresses.

Username and AES key
• Client specifies a username, the server must already know the associated AES key
• AES key is used as a symmetric session key (Client and Server use the key as a

shared secret)

This is basically a static symmetric session key setup. OWAMP is a fairly low-level tool
and its use of authentication is fairly simplistic. The current authentication scheme was
chosen because it was easy to implement and should be fairly easy to integrate into a
more complete solution. (For example, PKI could be used in combination with a Diffie-
Helman-style key agreement to dynamically allocate the AES session keys that are used
within the OWAMP protocol.)

Configuring the owampd Server
The basic procedure to configure owampd is to create an owampd.conf and, optionally,
an owampd.limits file and an owampd.keys file. These files need to be installed in the
same directory that is specified with the -c option to owampd. The recommended
directory is /ami/etc. (The etc directory below your install root.) There are examples of
these files in the owamp-$VERS/conf subdirectory of the distribution.

Configure owampd.conf
The owampd.conf file is the configuration file for the owampd daemon. It is used to
configure the basic operation of the server. For example, what addresses and ports it
should listen on, where it should send error messages, and where it should save files.

The example owampd.conf file from the conf subdirectory of the distribution is fairly
well annotated to explain all the available options and the owampd.conf manual page
http://e2epi.internet2.edu/owamp/owampd.conf.man.html also describes all the available
configuration options.

Most installations will only need to modify the following options:

datadir Directory that holds buffered data for test sessions received by the server
vardir Directory where owampd.pid and owampd.info files will be stored

user Specifies the uid the owampd process will run as
group Specifies the gid the owampd process will run as

Configure owampd.limits
The owampd.limits file is used to define the policy configuration for the owampd
program. It allows the system administrator to allocate the resources in a variety of ways.

There are two parts to the policy configuration:

Authentication
Who is making the request? This can be very specific to an individual user
or it can be more general in that the connection is coming from some
particular network.

Authorization

Now that the connection has been generally identified, what will owampd
allow it to do?

The authentication is done by assigning a limitclass to each new connection as it comes
in. Authorization is accomplished by using the set of limits each limitclass has associated
with it. The limits assigned to each limitclasses are hierarchical, so a connection must
pass the limit restrictions of the assigned limitclass as well as all parent classes.

http://e2epi.internet2.edu/owamp/owampd.conf.man.html

Within the owampd.limits file, assign lines are used to assign a limitclass to a given
connection. Limit lines are used to define a limitclass and set the limits associated with
that limitclass. The file is read sequentially, and it is not permitted to use a limitclass
before it is defined using a limit line.

An example of limitclass definition would be:

total available
limit root with \
 disk=100M, \
 bandwidth=0, \
 delete_on_fetch=on, \
 allow_open_mode=off

Hostile
limit hostile with parent=root, \
 disk=1, \
 bandwidth=1

NOC
limit noc with parent=root, \
 allow_open_mode=on

This example just shows three of the possible limitclasses from the hierarchy described
above. The full set of configuration options available to limit a given limitclass are
described in the owampd.limits(5) manual page
(http://e2epi.internet2.edu/owamp/owampd.limits.man.html).

The following example shows how you could use IP/netmask assignments to classify
connections from specific hosts:

loopback
assign net ::/127 noc
assign net 127.0.0.1/32 noc
abilene nmslan (observatory systems)
assign net 2001:468:0::/40 noc
assign net 198.32.10.0/23 noc
assign net 10.0.0.0/16 hostile

This example shows how any connections to the server from the loopback interface can
be assigned the limits associated with the noc limitclass. Additionally, the nmslan
systems are assigned to the same limitclass.

This example also illustrates how you can ensure that all connections from a given subnet
are denied unless they are authenticated (See the 10.0.0.0/16 line). The hostile limitclass
has allow_open_mode set to no. Therefore, open mode communications will not be
accepted from this address range. However, users on this subnet can still attempt to use
the username/AES key method of authentication. (If no communication at all is wanted
with a given subnet, that functionality is better provided with a firewall application.)

Netmask assignments should not be trusted too heavily. Loopback is reasonable, and
probably “local” networks, but great care should be taken before extending the model
beyond that.

The following example shows how you could use username assignments to classify
connections from specific users:

network admins
 assign user joe root
 assign user jim root
 assign user bob root

measurement geeks
 assign user boote noc

The owampd server needs to be able to authenticate that a given user is who they say they
are. This is done using a 128-bit shared key. The username to key association is made
known to owampd using the owampd.keys file described below. The user must have an
entry in the owampd.keys file to be used in the owampd.limits file. The owampd process
will refuse to start if a user is listed in the owampd.limits file if they do not have a key
associated in the owampd.keys file.

Configure owampd.keys
The owampd.keys file is used to hold the identity/AES keys pairs needed for owampd to
authenticate users. The format of this file is described in the aespasswd(1) manual page.
The location of the owampd.keys file is controlled by the -c option to owampd.

owampd uses symmetric AES keys for authentication. Therefore, the owping client must
have access to the exact same AES key for authentication by AES to work. Most likely,
the user will simply just know the passphrase that generated the AES key in the first
place. Additionally, it is important that the system administrator and end user ensure the
key is not compromised.

If the owping client is able to authenticate using the identity and AES key presented,
owampd will use the directives found in the owampd.limits file to map policy restrictions
to this connection.

Username and AES Key Rules
• Usernames are limited to 16 characters
• AES key is a 128 bit session key
• AES key is not encrypted in the keys file, use UNIX permissions to protect it
• Can use a pass phrase to generate the AES key
• Use aespasswd to add pass phrase generated keys into the keys file
• Client: application prompts user for pass phrase

The normal UNIX protection method would be to run the daemon with specific user or
group permissions that allow it to read the keys file, but limit the users that have access to
it. An example key file might look like:

joe a0167ac6101b360d2f4dd164abba2337
bob 2dc36fc4807894cdfbe180b71d2b4a0f

sam 3fc763fb270ce6ba6e928bd10d4977d3

This is simply a username associated with a hex encoded 128-bit value. By far the easiest
way to create and maintain the owampd.keys file is to use the aespasswd application.

aespasswd
This is similar to htpasswd (apache web server); you specify an identity to be added to a
key file and are prompted for a passphrase. This is a convenience since users don’t
remember 128-bit quantities very well. It is used to convert a passphrase into a 128-bit
hex key in a portable way across multiple architectures. For more information, see:
http://e2epi.internet2.edu/owamp/aespasswd.man.html. This same application is used to
manage key files for OWAMP and BWCTL, so take care which of the files you are
editing.

To create a new key file use the ‘-n’ option:

% aespasswd -n -f owampd.keys demo

Additional usernames can be added by omitting the ‘-n’:

% aespasswd -f bwctld.keys joe

For more complete information, see
http://e2epi.internet2.edu/owamp/owampd.keys.man.html,
http://e2epi.internet2.edu/owamp/aespasswd.man.html, and
http://e2epi.internet2.edu/owamp/owampd.limits.man.html.

Running One-Way Latency Measurements using
OWAMP

Starting owampd
Start the daemon in foreground mode during testing:

% /ami/bin/owampd -c /ami/etc –Z

Many of the command-line options are used to override the config file parameters. The ‘-
c’ option should always be used, unless the daemon is started from the config directory.
For more information, see: http://e2epi.internet2.edu/owamp/owampd.man.html.

Testing (owping)
First, try a simple localhost test and watch the output from owampd. This is a good test
because there are no clock difference issues to the localhost:

% /ami/bin/owping localhost

Running a test to localhost first helps verify a working configuration. Use the IP address
for the interface instead of the localhost interface to test for host based firewall problems.

http://e2epi.internet2.edu/owamp/aespasswd.man.html
http://e2epi.internet2.edu/owamp/owampd.keys.man.html
http://e2epi.internet2.edu/owamp/aespasswd.man.html
http://e2epi.internet2.edu/owamp/owampd.limits.man.html
http://e2epi.internet2.edu/owamp/owampd.man.html

Now, try a test to one of our hosts. (This host is only guaranteed to be available during a
Network Performance Workshop – we tend to try new things on here from time to time.)

% /ami/bin/owping nmsy-aami.abilene.ucaid.edu (Internet2 test host)

Now, try and test to other hosts. A good candidate would be a new deployment in one of
your peer networks or alternatively something off of the global PMP list
(http://e2epi.internet2.edu/pipes/pmp/pmp-dir.html).

%/ami/bin/owping otherhost

For more information, see: http://e2epi.internet2.edu/owamp/owping.man.html.

Once you have verified your install, it is recommended that you install an rc script that
automatically starts owampd when the host is booted. You should not be using the –Z
option of the daemon in general, but it is a very good debugging tool.

Troubleshooting
The most frequently seen problems are:

1. No Control Connection
a. No daemon running
b. Firewall - open control port (4824)

2. Control connection denied
a. Improper configuration
b. Invalid credentials

3. Control connection works, all test packets lost
a. Firewall – open ephemeral UDP ports or use testports in owampd.conf to

make owampd use a range of opened ports
b. Clock offset – If the clock offset between two systems is more than

timeout all packets will be declared lost. (See the –L option of owping for
a definition of timeout.) Use a large value for –L to test this. (Larger than
any possible clock differences between the systems.)

4. Negative delay values for results
a. Clock offset – Use NTP to see the clock differences between the systems

if possible.

http://e2epi.internet2.edu/pipes/pmp/pmp-dir.html
http://e2epi.internet2.edu/owamp/owping.man.html

	
	
	
	
	
	One-Way Ping (OWAMP): An Internet2 Cookbook
	
	 Disclosure/Disclaimer

	An Overview of OWAMP
	What Is It?
	Motivation
	Methodology
	Control Protocol
	Test Protocol

	Sample Implementation
	Functions and Features
	Client (owping)
	Daemon (owampd)
	Resource Allocation
	Architecture

	
	Overview
	Test Endpoints

	General Requirements
	Operational Concerns

	Policy Issues
	Security Considerations
	DoS Source
	DoS Target

	Resource Consumption
	Policy Recommendations

	Methodological Errors
	Availability
	Publicly-Accessible Servers

	Internet2 E2E piPEs Project
	 Installation Guide: Establishing an owampd Server
	Components
	Supported Systems
	Requirements and Recommendations
	Hardware Requirements
	Software and System Requirements
	Recommended Settings

	General Security Concerns
	OWAMP Security Concerns

	Building the OWAMP Programs

	Partitioning Resources
	Resources Allocated Using Hierarchical Limitclasses

	Classifying Connections
	IP/netmask
	Username and AES key

	Configuring the owampd Server
	The basic procedure to configure owampd is to create an owampd.conf and, optionally, an owampd.limits file and an owampd.keys file. These files need to be installed in the same directory that is specified with the -c option to owampd. The recommended directory is /ami/etc. (The etc directory below your install root.) There are examples of these files in the owamp-$VERS/conf subdirectory of the distribution.
	Configure owampd.conf
	Configure owampd.limits
	Configure owampd.keys
	Username and AES Key Rules

	aespasswd

	Running One-Way Latency Measurements using OWAMP
	Starting owampd
	Testing (owping)
	Troubleshooting

